論文の概要: Scalably learning quantum many-body Hamiltonians from dynamical data
- arxiv url: http://arxiv.org/abs/2209.14328v1
- Date: Wed, 28 Sep 2022 18:00:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 18:23:52.771003
- Title: Scalably learning quantum many-body Hamiltonians from dynamical data
- Title(参考訳): 動的データから量子多体ハミルトンをスケーラブルに学習する
- Authors: Frederik Wilde, Augustine Kshetrimayum, Ingo Roth, Dominik Hangleiter,
Ryan Sweke, Jens Eisert
- Abstract要約: 動的データから多体ハミルトニアンと相互作用する家族を学習するための、高度にスケーラブルでデータ駆動のアプローチを導入する。
当社のアプローチは非常に実用的で,実験的にフレンドリで,本質的にスケーラブルで,100スピンを超えるシステムサイズを実現しています。
- 参考スコア(独自算出の注目度): 1.702884126441962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The physics of a closed quantum mechanical system is governed by its
Hamiltonian. However, in most practical situations, this Hamiltonian is not
precisely known, and ultimately all there is are data obtained from
measurements on the system. In this work, we introduce a highly scalable,
data-driven approach to learning families of interacting many-body Hamiltonians
from dynamical data, by bringing together techniques from gradient-based
optimization from machine learning with efficient quantum state representations
in terms of tensor networks. Our approach is highly practical, experimentally
friendly, and intrinsically scalable to allow for system sizes of above 100
spins. In particular, we demonstrate on synthetic data that the algorithm works
even if one is restricted to one simple initial state, a small number of
single-qubit observables, and time evolution up to relatively short times. For
the concrete example of the one-dimensional Heisenberg model our algorithm
exhibits an error constant in the system size and scaling as the inverse square
root of the size of the data set.
- Abstract(参考訳): 閉量子力学系の物理学はそのハミルトニアンによって制御される。
しかし、最も現実的な状況では、このハミルトニアンは正確には知られておらず、最終的にはシステム上の測定から得られるデータが存在する。
本研究では,動的データから多体ハミルトニアンと相互作用する多体ハミルトニアンを学習するための,高度にスケーラブルでデータ駆動の手法を提案する。
当社のアプローチは非常に実用的で,実験的にフレンドリで,本質的にスケーラブルで,100スピンを超えるシステムサイズを実現しています。
特に,1つの単純な初期状態,少数のシングルキュービット観測可能量,比較的短い時間までの時間発展に制限された場合でも,アルゴリズムが動作することを合成データ上で実証する。
一次元ハイゼンベルクモデルの具体的な例として、我々のアルゴリズムは、システムサイズとスケールの誤差定数をデータセットのサイズの逆二乗根として示す。
関連論文リスト
- Automated quantum system modeling with machine learning [0.0]
機械学習アルゴリズムは、簡単な量子力学測定のセットを考慮し、量子モデルを構築することができることを示す。
我々は、マルコフのオープン量子システムのシミュレーションを通して、ニューラルネットワークが有効状態の$N$を自動的に検出できることを示した。
論文 参考訳(メタデータ) (2024-09-27T15:18:20Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
量子多体物理学における基本的な問題は、局所ハミルトニアンの基底状態を見つけることである。
基底状態特性を学習するためのシステムサイズ$n$とは無関係に,一定のサンプル複雑性を実現する2つのアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-28T18:00:32Z) - A hybrid method for quantum dynamics simulation [2.6340447642310383]
本稿では、トロッターに基づく量子アルゴリズムと古典的動的モード分解を組み合わせることで、量子多体力学をシミュレートするハイブリッド手法を提案する。
提案手法は, 量子コンピュータから短時間測定した一連のデータを用いて, 長期間の量子状態の観測可能性を予測する。
論文 参考訳(メタデータ) (2023-07-27T23:43:13Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
多体局在は、量子多体物理学の非常に難しい現象である。
計算コストの高いステップを回避できるフレキシブルニューラルネットワークベースの学習手法を提案する。
我々のアプローチは、量子多体物理学の新たな洞察を提供するために、大規模な量子実験に適用することができる。
論文 参考訳(メタデータ) (2022-02-17T19:00:09Z) - Robust and Efficient Hamiltonian Learning [2.121963121603413]
軽度の仮定に基づいて制限を回避できる頑健で効率的なハミルトン学習法を提案する。
提案手法は,短時間のダイナミクスと局所演算のみを用いて,パウリベースでスパースなハミルトニアンを効率的に学習することができる。
ランダムな相互作用強度と分子ハミルトニアンを持つ横場イジング・ハミルトニアンのスケーリングと推定精度を数値的に検証する。
論文 参考訳(メタデータ) (2022-01-01T13:48:15Z) - Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum
dynamics [0.0]
平衡外量子系におけるハミルトントモグラフィーのためのニューラルネットワークに基づくスケーラブルなアルゴリズムを提案する。
具体的には,任意の大きさの準1次元ボゾン系のハミルトニアンを再構成可能であることを示す。
論文 参考訳(メタデータ) (2021-03-01T19:00:15Z) - Learning Quantum Hamiltonians from Single-qubit Measurements [5.609584942407068]
本研究では,1量子ビット計測の時間的記録から,対象ハミルトニアンのパラメータを学習するための繰り返しニューラルネットワークを提案する。
これは時間に依存しないハミルトン群と時間に依存しないハミルトン群の両方に適用できる。
論文 参考訳(メタデータ) (2020-12-23T07:15:20Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
我々は、絡み合った多体量子状態をコンパクトに表現するための、新しい非パラメトリック形式を示す。
この状態は、非常にコンパクトで、体系的に即効性があり、サンプリングに効率的である。
また、量子状態に対する普遍的な近似器として証明されており、データセットのサイズが大きくなるにつれて、絡み合った多体状態も捉えることができる。
論文 参考訳(メタデータ) (2020-02-27T15:54:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。