論文の概要: Efficient Medical Image Assessment via Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2209.14434v1
- Date: Wed, 28 Sep 2022 21:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 16:07:57.486996
- Title: Efficient Medical Image Assessment via Self-supervised Learning
- Title(参考訳): 自己教師付き学習による効率的な医用画像評価
- Authors: Chun-Yin Huang, Qi Lei, and Xiaoxiao Li
- Abstract要約: 高性能なディープラーニング手法は通常、大きな注釈付きトレーニングデータセットに依存する。
本稿では,未ラベルの医用画像データの品質をランク付けするための,新規で効率的なデータアセスメント戦略を提案する。
SSL埋め込み空間の理論的な意味から,我々はMasked Autoencoderを用いて特徴抽出を行う。
- 参考スコア(独自算出の注目度): 27.969767956918503
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: High-performance deep learning methods typically rely on large annotated
training datasets, which are difficult to obtain in many clinical applications
due to the high cost of medical image labeling. Existing data assessment
methods commonly require knowing the labels in advance, which are not feasible
to achieve our goal of 'knowing which data to label.' To this end, we formulate
and propose a novel and efficient data assessment strategy, EXponentiAl
Marginal sINgular valuE (EXAMINE) score, to rank the quality of unlabeled
medical image data based on their useful latent representations extracted via
Self-supervised Learning (SSL) networks. Motivated by theoretical implication
of SSL embedding space, we leverage a Masked Autoencoder for feature
extraction. Furthermore, we evaluate data quality based on the marginal change
of the largest singular value after excluding the data point in the dataset. We
conduct extensive experiments on a pathology dataset. Our results indicate the
effectiveness and efficiency of our proposed methods for selecting the most
valuable data to label.
- Abstract(参考訳): 高性能な深層学習法は一般的に大量の注釈付きトレーニングデータセットに依存しており、医療画像のラベル付けのコストが高いため、多くの臨床応用では入手が困難である。
既存のデータアセスメント手法では、事前にラベルを知る必要があるが、「ラベルにどのデータを知るか」という目標を達成することは不可能である。
そこで本研究では,自己教師型学習(SSL)ネットワークから抽出した有意な潜伏表現に基づいて,ラベルのない医用画像データの品質をランク付けするために,EXAMINEスコア(ExponentiAl Marginal sINgular valuE)の新規かつ効率的なデータ評価戦略を定式化し,提案する。
SSL埋め込み空間の理論的含意により、我々は特徴抽出にMasked Autoencoderを利用する。
さらに,データセット内のデータポイントを除外した後,最大の特異値の限界変化に基づいてデータ品質を評価する。
我々は病理データについて広範な実験を行う。
提案手法の有効性と有効性を示し,ラベルに最も価値の高いデータを選択する。
関連論文リスト
- Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition [10.317372960942972]
本稿では,自己教師付き学習を半教師付きモデルに統合し,医用画像認識を向上する,革新的なアプローチを提案する。
提案手法はラベルのないデータを最適に活用し,医用画像認識の精度で既存の手法より優れている。
論文 参考訳(メタデータ) (2024-04-16T09:12:16Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
子宮頸癌放射線治療におけるOAR(Organs at Risk)の自動セグメンテーションのためのディープラーニングモデルを学習するためのアプローチを提案する。
我々は、データの不均一性、ラベルノイズ、アノテーションの欠如を最小限に抑えるために、自動データのクリーニングにシンプルな手法を採用している。
そこで本研究では,教師が指導するシステム,アノテーション命令,不確実性誘導学習を利用して,アノテーションの欠如の有無を学習する半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-02-21T13:24:40Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
半教師付き学習は、深層ニューラルネットワークを訓練する際のデータ効率を改善する可能性がある。
本稿では,切削ペースト増分法と整合性正規化の考え方を基礎として,簡易な半教師付き学習法を提案する。
論文 参考訳(メタデータ) (2022-10-01T04:43:54Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
ディープラーニングモデルのトレーニングには、かなりの量のラベル付きイメージが必要です。
多くの公開データセットが、さまざまな病院や診療所のデータで構築されている。
ラベルなしデータを利用した半教師付き深層学習手法であるMixMatchを提案し評価した。
論文 参考訳(メタデータ) (2021-07-24T22:26:50Z) - Active learning for medical code assignment [55.99831806138029]
臨床領域における多ラベルテキスト分類におけるアクティブラーニング(AL)の有効性を示す。
MIMIC-IIIデータセットにICD-9コードを自動的に割り当てるために、よく知られたALメソッドのセットを適用します。
その結果、有益なインスタンスの選択は、大幅に減少したトレーニングセットで満足のいく分類を提供する。
論文 参考訳(メタデータ) (2021-04-12T18:11:17Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。