論文の概要: Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition
- arxiv url: http://arxiv.org/abs/2404.10405v1
- Date: Tue, 16 Apr 2024 09:12:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:23:30.996243
- Title: Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition
- Title(参考訳): 半監督型医用画像認識における自己監督型BYOLの統合
- Authors: Hao Feng, Yuanzhe Jia, Ruijia Xu, Mukesh Prasad, Ali Anaissi, Ali Braytee,
- Abstract要約: 本稿では,自己教師付き学習を半教師付きモデルに統合し,医用画像認識を向上する,革新的なアプローチを提案する。
提案手法はラベルのないデータを最適に活用し,医用画像認識の精度で既存の手法より優れている。
- 参考スコア(独自算出の注目度): 10.317372960942972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.
- Abstract(参考訳): 画像認識技術は、特に医学的文脈において、豊富なラベル付きデータに大きく依存している。
ラベル付きデータ取得に関わる課題に対処するため、特に注釈付きデータに制限のあるシナリオにおいて、自己教師付き学習と半教師付き学習が顕著になった。
本稿では,自己教師付き学習を半教師付きモデルに統合し,医用画像認識を向上する,革新的なアプローチを提案する。
BYOL法を用いてラベルなしデータの事前学習を開始する。
その後、擬似ラベル付きおよびラベル付きデータセットをマージしてニューラルネットワーク分類器を構築し、反復的な微調整によって精錬する。
3つの異なるデータセットに対する実験結果から,本手法はラベルのないデータを最適に活用し,医用画像認識の精度で既存の手法より優れていることが示された。
関連論文リスト
- MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
本稿では, Pseudo-Labels Guided Data Augmentation を用いた新しい半教師付き学習手法である Dual-Decoder Consistency を提案する。
我々は、同じエンコーダを維持しながら、生徒と教師のネットワークに異なるデコーダを使用します。
ラベルのないデータから学習するために、教師ネットワークによって生成された擬似ラベルを作成し、擬似ラベルでトレーニングデータを増強する。
論文 参考訳(メタデータ) (2023-08-31T09:13:34Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
半教師付き学習は、深層ニューラルネットワークを訓練する際のデータ効率を改善する可能性がある。
本稿では,切削ペースト増分法と整合性正規化の考え方を基礎として,簡易な半教師付き学習法を提案する。
論文 参考訳(メタデータ) (2022-10-01T04:43:54Z) - Efficient Medical Image Assessment via Self-supervised Learning [27.969767956918503]
高性能なディープラーニング手法は通常、大きな注釈付きトレーニングデータセットに依存する。
本稿では,未ラベルの医用画像データの品質をランク付けするための,新規で効率的なデータアセスメント戦略を提案する。
SSL埋め込み空間の理論的な意味から,我々はMasked Autoencoderを用いて特徴抽出を行う。
論文 参考訳(メタデータ) (2022-09-28T21:39:00Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
本稿では,新しい半教師付きドメイン適応手法,すなわちDual-Teacherを提案する。
学生モデルは、2つの教師モデルによってラベル付けされていない対象データとラベル付けされた情報源データの知識を学習する。
提案手法では, ラベルなしデータとモダリティ間データとを並列に利用でき, 性能が向上することを示した。
論文 参考訳(メタデータ) (2020-07-13T10:00:44Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。