Out-of-Distribution Detection for LiDAR-based 3D Object Detection
- URL: http://arxiv.org/abs/2209.14435v1
- Date: Wed, 28 Sep 2022 21:39:25 GMT
- Title: Out-of-Distribution Detection for LiDAR-based 3D Object Detection
- Authors: Chengjie Huang, Van Duong Nguyen, Vahdat Abdelzad, Christopher Gus
Mannes, Luke Rowe, Benjamin Therien, Rick Salay, Krzysztof Czarnecki
- Abstract summary: 3D object detection is an essential part of automated driving.
Deep models are notorious for assigning high confidence scores to out-of-distribution (OOD) inputs.
In this paper, we focus on the detection of OOD inputs for LiDAR-based 3D object detection.
- Score: 8.33476679218773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection is an essential part of automated driving, and deep
neural networks (DNNs) have achieved state-of-the-art performance for this
task. However, deep models are notorious for assigning high confidence scores
to out-of-distribution (OOD) inputs, that is, inputs that are not drawn from
the training distribution. Detecting OOD inputs is challenging and essential
for the safe deployment of models. OOD detection has been studied extensively
for the classification task, but it has not received enough attention for the
object detection task, specifically LiDAR-based 3D object detection. In this
paper, we focus on the detection of OOD inputs for LiDAR-based 3D object
detection. We formulate what OOD inputs mean for object detection and propose
to adapt several OOD detection methods for object detection. We accomplish this
by our proposed feature extraction method. To evaluate OOD detection methods,
we develop a simple but effective technique of generating OOD objects for a
given object detection model. Our evaluation based on the KITTI dataset shows
that different OOD detection methods have biases toward detecting specific OOD
objects. It emphasizes the importance of combined OOD detection methods and
more research in this direction.
Related papers
- Open-Set 3D object detection in LiDAR data as an Out-of-Distribution problem [6.131026007721572]
3D Object Detection from LiDAR data has achieved industry-ready performance in controlled environments.
Our work redefines the open-set 3D Object Detection problem in LiDAR data as an Out-Of-Distribution (OOD) problem to detect outlier objects.
arXiv Detail & Related papers (2024-10-31T09:29:55Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection [12.633311483061647]
Out-of-distribution (OOD) objects can lead to misclassifications, posing a significant risk to the safety and reliability of automated vehicles.
We propose a new evaluation protocol that allows the use of existing datasets without modifying the point cloud.
The effectiveness of our method is validated through experiments on the newly proposed nuScenes OOD benchmark.
arXiv Detail & Related papers (2024-04-24T13:48:38Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
We introduce Neuron Activation PaTteRns for out-of-distribution samples detection in Object detectioN (NAPTRON)
Our approach outperforms state-of-the-art methods, without the need to affect in-distribution (ID) performance.
We have created the largest open-source benchmark for OOD object detection.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOOD is a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task.
We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
arXiv Detail & Related papers (2022-12-05T07:52:08Z) - Identifying Out-of-Distribution Samples in Real-Time for Safety-Critical
2D Object Detection with Margin Entropy Loss [0.0]
We present an approach to enable OOD detection for 2D object detection by employing the margin entropy (ME) loss.
A CNN trained with the ME loss significantly outperforms OOD detection using standard confidence scores.
arXiv Detail & Related papers (2022-09-01T11:14:57Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.