YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2212.02081v2
- Date: Tue, 21 Nov 2023 12:43:30 GMT
- Title: YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection
- Authors: Alon Zolfi, Guy Amit, Amit Baras, Satoru Koda, Ikuya Morikawa, Yuval
Elovici, Asaf Shabtai
- Abstract summary: YolOOD is a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task.
We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
- Score: 25.68925703896601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection has attracted a large amount of attention
from the machine learning research community in recent years due to its
importance in deployed systems. Most of the previous studies focused on the
detection of OOD samples in the multi-class classification task. However, OOD
detection in the multi-label classification task, a more common real-world use
case, remains an underexplored domain. In this research, we propose YolOOD - a
method that utilizes concepts from the object detection domain to perform OOD
detection in the multi-label classification task. Object detection models have
an inherent ability to distinguish between objects of interest
(in-distribution) and irrelevant objects (e.g., OOD objects) in images that
contain multiple objects belonging to different class categories. These
abilities allow us to convert a regular object detection model into an image
classifier with inherent OOD detection capabilities with just minor changes. We
compare our approach to state-of-the-art OOD detection methods and demonstrate
YolOOD's ability to outperform these methods on a comprehensive suite of
in-distribution and OOD benchmark datasets.
Related papers
- TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
We propose textbfTagOOD, a novel approach for OOD detection using vision-language representations.
TagOOD trains a lightweight network on the extracted object features to learn representative class centers.
These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection.
arXiv Detail & Related papers (2024-08-28T06:37:59Z) - A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? [49.88894124047644]
We take a closer look at 20 state-of-the-art OOD detection methods.
We show that poor separation between incorrectly classified ID samples vs. OOD samples is an overlooked yet important limitation of existing methods.
arXiv Detail & Related papers (2024-04-02T09:40:22Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distribution (OOD) detection aims at identifying samples from unknown classes.
We propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases.
arXiv Detail & Related papers (2024-03-29T09:19:52Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models.
In this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model.
Experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
arXiv Detail & Related papers (2024-03-20T06:04:05Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
We introduce Neuron Activation PaTteRns for out-of-distribution samples detection in Object detectioN (NAPTRON)
Our approach outperforms state-of-the-art methods, without the need to affect in-distribution (ID) performance.
We have created the largest open-source benchmark for OOD object detection.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Out-of-Distribution Detection for LiDAR-based 3D Object Detection [8.33476679218773]
3D object detection is an essential part of automated driving.
Deep models are notorious for assigning high confidence scores to out-of-distribution (OOD) inputs.
In this paper, we focus on the detection of OOD inputs for LiDAR-based 3D object detection.
arXiv Detail & Related papers (2022-09-28T21:39:25Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.