論文の概要: A Diver Attention Estimation Framework for Effective Underwater Human-Robot Interaction
- arxiv url: http://arxiv.org/abs/2209.14447v2
- Date: Thu, 13 Mar 2025 03:06:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 21:36:22.188411
- Title: A Diver Attention Estimation Framework for Effective Underwater Human-Robot Interaction
- Title(参考訳): 水中ロボットの効果的なインタラクションのためのダイバーアテンション推定フレームワーク
- Authors: Sadman Sakib Enan, Junaed Sattar,
- Abstract要約: 近年の視覚に基づく水中HRI法の進歩は、トップサイドオペレーターの助けを必要とせずに、人間のパートナーと対話する能力を持っている。
これらの方法では、AUVはダイバーが相互作用する準備ができていると仮定するが、実際にはダイバーは邪魔される可能性がある。
本稿では、ダイバーの注意度を自律的に決定するための、AUVに対するダイバーアテンション推定フレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.267807345588581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many underwater tasks, such as cable-and-wreckage inspection and search-and-rescue, can benefit from robust Human-Robot Interaction (HRI) capabilities. With the recent advancements in vision-based underwater HRI methods, Autonomous Underwater Vehicles (AUVs) have the capability to interact with their human partners without requiring assistance from a topside operator. However, in these methods, the AUV assumes that the diver is ready for interaction, while in reality, the diver may be distracted. In this paper, we attempt to address this problem by presenting a diver attention estimation framework for AUVs to autonomously determine the attentiveness of a diver, and developing a robot controller to allow the AUV to navigate and reorient itself with respect to the diver before initiating interaction. The core element of the framework is a deep convolutional neural network called DATT-Net. It is based on a pyramid structure that can exploit the geometric relations among 10 facial keypoints of a diver to estimate their head orientation, which we use as an indicator of attentiveness. Our on-the-bench experimental evaluations and real-world experiments during both closed- and open-water robot trials confirm the efficacy of the proposed framework.
- Abstract(参考訳): ケーブル・アンド・ウォッケージ・インスペクションやサーチ・アンド・レスキューのような多くの水中タスクは、堅牢なヒューマン・ロボット・インタラクション(HRI)能力の恩恵を受けることができる。
近年の視覚に基づく水中HRI手法の進歩により、自律水中車両(AUV)は、トップサイドオペレーターの助けを必要とせずに、人間のパートナーと対話する能力を持つ。
しかし、これらの方法では、AUVはダイバーが相互作用する準備ができていると仮定する一方で、実際にはダイバーは邪魔される可能性がある。
本稿では,AUVが自律的にダイバーの注意力を決定するためのダイバーアテンション推定フレームワークを提示し,AUVがダイバーに対して対話を開始する前に自らをナビゲート・リオリエントさせるロボットコントローラを開発することにより,この問題に対処する。
フレームワークの中核となる要素は、DATT-Netと呼ばれる深層畳み込みニューラルネットワークである。
これは、ダイバーの顔のキーポイント間の幾何学的関係を利用して頭部の向きを推定し、注意力の指標として用いるピラミッド構造に基づいている。
クローズドとオープンウォーターの両ロボット実験における実環境実験と実環境実験により,提案手法の有効性が確認された。
関連論文リスト
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
本稿では,ニューラルネットワーク検証技術を利用して制御障壁関数(CBF)とポリシー修正機構の設計を行う階層型制御フレームワークを提案する。
提案手法は,安全なCBFベースの制御層を構築するために使用される,安全でない操作領域を特定するための確率的列挙に依存する。
これらの実験は、効率的なナビゲーション動作を維持しながら、安全でない動作を補正する提案手法の能力を実証するものである。
論文 参考訳(メタデータ) (2025-04-30T13:47:25Z) - Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges [0.46873264197900916]
水中でのソナーの使用は、限られた訓練データと固有のノイズが特徴であり、頑丈さをモデル化する上での課題となっている。
本稿では,分類,物体検出,セグメンテーション,SLAMなどのソナーベース認知タスクモデルについて検討する。
ソナーベースの最先端データセット、シミュレータ、ニューラルネットワーク検証、アウト・オブ・ディストリビューション、敵攻撃などの堅牢性メソッドを体系化する。
論文 参考訳(メタデータ) (2024-12-16T15:03:08Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
協調ナビゲーション(CoNav)ベンチマークを提案する。
われわれのCoNavは、現実的で多様な人間の活動を伴う3Dナビゲーション環境を構築するという重要な課題に取り組む。
本研究では,長期的意図と短期的意図の両方を推論する意図認識エージェントを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:44:25Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Learning from Observer Gaze:Zero-Shot Attention Prediction Oriented by Human-Object Interaction Recognition [13.956664101032006]
まず,740種類の相互作用カテゴリの530,000個の固定点を含む,IGという新しい視線固定データセットを収集した。
次に、ゼロショットインタラクション指向の注意予測タスクZeroIAを紹介し、トレーニング中に遭遇しないインタラクションに対する視覚的手がかりを予測するモデルに挑戦する。
第3に、人間観測者の認知過程をエミュレートしてZeroIA問題に取り組むための対話型注意モデルIAを提案する。
論文 参考訳(メタデータ) (2024-05-16T09:34:57Z) - Belief Aided Navigation using Bayesian Reinforcement Learning for Avoiding Humans in Blind Spots [0.0]
本研究では、部分的に観測可能なマルコフ決定プロセスフレームワークに基づく新しいアルゴリズムBNBRL+を導入し、観測不能領域のリスクを評価する。
ロボット、人間、そして推論された信念のダイナミクスを統合し、ナビゲーションパスを決定し、報酬関数に社会規範を埋め込む。
このモデルでは、視認性に限界があり、障害物を動的に回避できるため、自動運転車の安全性と信頼性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-15T08:50:39Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - FollowMe: a Robust Person Following Framework Based on Re-Identification
and Gestures [12.850149165791551]
HRI(Human-robot Interaction)は、住宅や産業において、操作の柔軟性を促進するための重要な手段となっている。
本研究では,ロボットが対象者を識別・追跡できる統合認識・ナビゲーション・フレームワークを開発した。
Re-IDモジュールは、対象者の特徴を自律的に学習し、取得した知識を使用してターゲットを視覚的に再識別する。
論文 参考訳(メタデータ) (2023-11-21T20:59:27Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
本稿では,Human and Object Disentangling Network (HODN) を提案し,Human-Object Interaction (HOI) の関係を明示的にモデル化する。
インタラクションに人間的特徴がより寄与していることを考慮し,インタラクションデコーダが人間中心の領域に焦点を当てていることを確認するためのヒューマンガイドリンク手法を提案する。
提案手法は,V-COCOとHICO-Det Linkingデータセットの競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-20T04:12:50Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Robotic Detection of a Human-Comprehensible Gestural Language for
Underwater Multi-Human-Robot Collaboration [16.823029377470363]
本稿では,自律型水中車両(AUV)とヒトダイバーの非言語コミュニケーションを可能にする移動型ロボット通信フレームワークを提案する。
我々は,会話を観察するダイバーが容易に理解できるAUV-to-A通信のためのジェスチャー言語を設計する。
Asが別のAUVからのジェスチャーを視覚的に理解できるようにするために,自己認識機構を利用したディープネットワーク(RRCommNet)を提案する。
論文 参考訳(メタデータ) (2022-07-12T06:04:12Z) - Centralizing State-Values in Dueling Networks for Multi-Robot
Reinforcement Learning Mapless Navigation [87.85646257351212]
本稿では,CTDE(Training and Decentralized Execution)パラダイムにおけるマルチロボットマップレスナビゲーションの問題点について考察する。
この問題は、各ロボットが観察を他のロボットと明示的に共有することなく、その経路を考えると困難である。
我々は,集中型状態値ネットワークを用いて共同状態値を計算するCTDEの新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-16T16:47:00Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Visual Diver Face Recognition for Underwater Human-Robot Interaction [14.96844256049975]
提案手法は,スキューバマスクや呼吸装置で顔がよく見えない水中のダイバーを識別する。
ダイバーを正しく認識する能力により、自律水中車両(AUV)は正しい人との共同作業を行うことができる。
論文 参考訳(メタデータ) (2020-11-18T21:57:09Z) - DARE: AI-based Diver Action Recognition System using Multi-Channel CNNs
for AUV Supervision [3.5584173777587935]
本稿では,認知自律走行バディデータセットに基づいて学習したダイバー動作認識システムDAREを提案する。
DAREは高速で、1つのステレオペアを分類するのに数ミリ秒しか必要としないため、リアルタイム水中実装に適している。
論文 参考訳(メタデータ) (2020-11-16T04:05:32Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。