論文の概要: In Search of Projectively Equivariant Neural Networks
- arxiv url: http://arxiv.org/abs/2209.14719v1
- Date: Thu, 29 Sep 2022 12:26:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 17:20:34.918350
- Title: In Search of Projectively Equivariant Neural Networks
- Title(参考訳): 計画的同変ニューラルネットワークの探索
- Authors: Georg B\"okman, Axel Flinth, Fredrik Kahl
- Abstract要約: 我々は同値条件を緩和し、射影的な意味でのみ真となる。
重要な例では、問題は実際には同等であることを示す。
- 参考スコア(独自算出の注目度): 16.056970388822307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariance of linear neural network layers is well studied. In this work,
we relax the equivariance condition to only be true in a projective sense. In
particular, we study the relation of projective and ordinary equivariance and
show that for important examples, the problems are in fact equivalent.
The rotation group in 3D acts projectively on the projective plane. We
experimentally study the practical importance of rotation equivariance when
designing networks for filtering 2D-2D correspondences. Fully equivariant
models perform poorly, and while a simple addition of invariant features to a
strong baseline yields improvements, this seems to not be due to improved
equivariance.
- Abstract(参考訳): 線形ニューラルネットワーク層の等価性はよく研究されている。
この研究において、同値条件は射影的意味でのみ真となるように緩和する。
特に、射影同値関係と通常の同値関係を考察し、重要な例では問題が実際に同値であることを示す。
3d の回転群は射影平面上で射影的に作用する。
2D-2D対応をフィルタリングするネットワーク設計における回転平衡の実際的重要性を実験的に検討する。
完全な同変モデルは性能が悪く、強いベースラインに不変の単純な付加が改善をもたらすが、これは改良された同変によるものではないようである。
関連論文リスト
- Equivariant neural networks and piecewise linear representation theory [0.0]
等価ニューラルネットワークは対称性を持つニューラルネットワークである。
群表現の理論により、同変ニューラルネットワークの層を単純な表現に分解する。
論文 参考訳(メタデータ) (2024-08-01T23:08:37Z) - Investigating how ReLU-networks encode symmetries [13.935148870831396]
ネットワークの等式がすべての層が等式であることを示すかどうかを考察する。
等変で訓練されたCNNは階層的に等変を示すと推測する。
2つの異なるネットワークをマージするよりも、ネットワークとグループ変換されたバージョンをマージすることが通常容易であることを示す。
論文 参考訳(メタデータ) (2023-05-26T15:23:20Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
群同変ニューラルネットワーク(英: Group equivariant Neural Network)は、入力の変換で通勤する構造に制限されたモデルである。
自己教師型タスクには、同変プリテキストラベルと異変コントラスト損失という2つの概念を提案する。
標準画像認識ベンチマークの実験では、同変ニューラルネットワークが提案された自己教師型タスクを利用することを示した。
論文 参考訳(メタデータ) (2023-03-08T08:11:26Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
群等価ニューラルネットワークは群不変ニューラルネットワークの構成要素として用いられる。
我々は、文学の範囲を、ディープラーニングモデルの顕著な構築ブロックとして現れつつある自己注意にまで広げる。
任意のリー群とその離散部分群に同値なリー自己結合層からなる構造であるリー変換器を提案する。
論文 参考訳(メタデータ) (2020-12-20T11:02:49Z) - A Unifying View on Implicit Bias in Training Linear Neural Networks [31.65006970108761]
線形ニューラルネットワークトレーニングにおける勾配流(無限小ステップサイズの勾配勾配勾配勾配)の暗黙バイアスについて検討する。
本稿では, ニューラルネットワークのテンソルの定式化について検討し, 完全連結型, 対角型, 畳み込み型ネットワークを特殊な場合として提案する。
論文 参考訳(メタデータ) (2020-10-06T06:08:35Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。