A Multi-Agent Framework for the Asynchronous and Collaborative Extension
of Multitask ML Systems
- URL: http://arxiv.org/abs/2209.14745v1
- Date: Thu, 29 Sep 2022 13:02:58 GMT
- Title: A Multi-Agent Framework for the Asynchronous and Collaborative Extension
of Multitask ML Systems
- Authors: Andrea Gesmundo
- Abstract summary: Tradition ML development methodology does not enable a large number of contributors to work collectively on the creation and extension of a shared intelligent system.
We present a multi-agent framework for collaborative and asynchronous extension of dynamic large-scale multitask intelligent systems.
- Score: 2.579908688646812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tradition ML development methodology does not enable a large number of
contributors, each with distinct objectives, to work collectively on the
creation and extension of a shared intelligent system. Enabling such a
collaborative methodology can accelerate the rate of innovation, increase ML
technologies accessibility and enable the emergence of novel capabilities. We
believe that this can be achieved through the definition of abstraction
boundaries and a modularized representation of ML models and methods. We
present a multi-agent framework for collaborative and asynchronous extension of
dynamic large-scale multitask intelligent systems.
Related papers
- Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)
We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.
We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.
We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.
Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - COLLAGE: Collaborative Human-Agent Interaction Generation using Hierarchical Latent Diffusion and Language Models [14.130327598928778]
Large language models (LLMs) and hierarchical motion-specific vector-quantized variational autoencoders (VQ-VAEs) are proposed.
Our framework generates realistic and diverse collaborative human-object-human interactions, outperforming state-of-the-art methods.
Our work opens up new possibilities for modeling complex interactions in various domains, such as robotics, graphics and computer vision.
arXiv Detail & Related papers (2024-09-30T17:02:13Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
We focus on designing a flexible agent engineering framework capable of handling complex use case applications across various domains.
The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents.
arXiv Detail & Related papers (2024-06-28T16:39:20Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Interactive Continual Learning: Fast and Slow Thinking [19.253164551254734]
This paper presents a novel Interactive Continual Learning framework, enabled by collaborative interactions among models of various sizes.
To improve memory retrieval in System1, we introduce the CL-vMF mechanism, based on the von Mises-Fisher (vMF) distribution.
Comprehensive evaluation of our proposed ICL demonstrates significant resistance to forgetting and superior performance relative to existing methods.
arXiv Detail & Related papers (2024-03-05T03:37:28Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - A Continual Development Methodology for Large-scale Multitask Dynamic ML
Systems [2.579908688646812]
The presented work is based on the intuition that defining ML models as modular and unbounded artefacts allows to introduce a novel ML development methodology.
We define a novel method for the generation of multitask ML models as a sequence of extensions and multitasks.
This results in the generation of an ML model capable of jointly solving 124 image classification tasks achieving state of the art quality with improved size and compute cost.
arXiv Detail & Related papers (2022-09-15T14:36:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.