論文の概要: Graph Anomaly Detection with Graph Neural Networks: Current Status and
Challenges
- arxiv url: http://arxiv.org/abs/2209.14930v1
- Date: Thu, 29 Sep 2022 16:47:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 16:44:17.931911
- Title: Graph Anomaly Detection with Graph Neural Networks: Current Status and
Challenges
- Title(参考訳): グラフニューラルネットワークによるグラフ異常検出の現状と課題
- Authors: Hwan Kim, Byung Suk Lee, Won-Yong Shin, Sungsu Lim
- Abstract要約: グラフニューラルネットワーク(GNN)は広く研究され、困難な機械学習タスクを成功させた。
本調査は,GNNに基づくグラフ異常検出手法の総合的なレビューとしては初めてである。
- 参考スコア(独自算出の注目度): 9.076649460696402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are used widely to model complex systems, and detecting anomalies in a
graph is an important task in the analysis of complex systems. Graph anomalies
are patterns in a graph that do not conform to normal patterns expected of the
attributes and/or structures of the graph. In recent years, graph neural
networks (GNNs) have been studied extensively and have successfully performed
difficult machine learning tasks in node classification, link prediction, and
graph classification thanks to the highly expressive capability via message
passing in effectively learning graph representations. To solve the graph
anomaly detection problem, GNN-based methods leverage information about the
graph attributes (or features) and/or structures to learn to score anomalies
appropriately. In this survey, we review the recent advances made in detecting
graph anomalies using GNN models. Specifically, we summarize GNN-based methods
according to the graph type (i.e., static and dynamic), the anomaly type (i.e.,
node, edge, subgraph, and whole graph), and the network architecture (e.g.,
graph autoencoder, graph convolutional network). To the best of our knowledge,
this survey is the first comprehensive review of graph anomaly detection
methods based on GNNs.
- Abstract(参考訳): グラフは複雑なシステムのモデル化に広く使われており、グラフ内の異常を検出することは複雑なシステムの解析において重要なタスクである。
グラフ異常(Graph Anomalies)は、グラフの属性や構造が期待する通常のパターンに適合しないグラフのパターンである。
近年,グラフニューラルネットワーク(GNN)の研究が盛んに行われ,ノード分類,リンク予測,グラフ分類において,グラフ表現を効果的に学習する上で,メッセージパッシングによる高い表現能力のおかげで,困難な機械学習タスクを成功させた。
グラフ異常検出問題を解決するため、GNNベースの手法では、グラフ属性(または特徴)および/または構造に関する情報を活用して、異常を適切にスコアする。
本稿では,GNNモデルを用いたグラフ異常検出における最近の進歩について概説する。
具体的には、グラフタイプ(静的および動的)、異常タイプ(ノード、エッジ、サブグラフ、グラフ全体)、ネットワークアーキテクチャ(グラフオートエンコーダ、グラフ畳み込みネットワークなど)に基づいてGNNベースの手法を要約する。
我々の知る限り、この調査はGNNに基づくグラフ異常検出手法の総合的なレビューとしては初めてである。
関連論文リスト
- GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks [20.05098366613674]
本稿では,グラフ分類タスクの多段階説明の生成と評価を目的とした視覚解析システムであるGNNAnatomyを紹介する。
GNNAnatomyは、グラフレット、原始グラフサブ構造を用いて、GNN予測とグラフレット周波数の相関を分析することにより、グラフクラスで最も重要なサブ構造を識別する。
社会学・生物学領域からの合成および実世界のグラフデータセットのケーススタディを通して,GNN解剖学の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-06T23:09:54Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
グラフニューラルネットワーク(GNN)は、グラフのエッジに沿ってメッセージを渡すことによって、グラフデータの構造を活用することができる。
本稿では,グラフにエッジを体系的に付加することで過疎化を防止する計算効率のよいアルゴリズムを提案する。
提案アルゴリズムは,いくつかのグラフ分類タスクにおいて,既存のグラフリウィリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T07:58:03Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、中規模グラフでサポートされているデータから表現を学ぶのに成功している。
適度な大きさのグラフ上でGNNを訓練し、それらを大規模グラフに転送する問題について検討する。
その結果, (i) グラフサイズに応じて転送誤差が減少し, (ii) グラフフィルタは非線型性の散乱挙動によってGNNにおいて緩和されるような転送可能性-識別可能性トレードオフを有することがわかった。
論文 参考訳(メタデータ) (2021-12-09T00:08:09Z) - Lifelong Graph Learning [6.282881904019272]
連続グラフ学習問題を正規グラフ学習問題に変換することにより、グラフ学習と生涯学習を橋渡しする。
機能グラフネットワーク(FGN)は,ウェアラブルデバイスを用いた生涯の人間行動認識と特徴マッチングという2つのアプリケーションにおいて,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-09-01T18:21:34Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graph Signal Processing -- Part III: Machine Learning on Graphs, from
Graph Topology to Applications [19.29066508374268]
このモノグラフのパートIIIは、グラフトポロジーを学ぶ方法に対処することから始まる。
特に注目されるのは、観測データの相関および精度行列に基づくグラフトポロジーの定義である。
スパースグラフの学習には、LASSOとして知られる最小絶対縮小と選択演算子を用いる。
論文 参考訳(メタデータ) (2020-01-02T13:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。