EiHi Net: Out-of-Distribution Generalization Paradigm
- URL: http://arxiv.org/abs/2209.14946v1
- Date: Thu, 29 Sep 2022 17:08:12 GMT
- Title: EiHi Net: Out-of-Distribution Generalization Paradigm
- Authors: Qinglai Wei, Beiming Yuan, Diancheng Chen
- Abstract summary: EiHi net is a model learning paradigm that can be blessed on any visual backbone.
This paper develops a new EiHi net to solve the out-of-distribution (OoD) generalization problem in deep learning.
- Score: 6.33280703577189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops a new EiHi net to solve the out-of-distribution (OoD)
generalization problem in deep learning. EiHi net is a model learning paradigm
that can be blessed on any visual backbone. This paradigm can change the
previous learning method of the deep model, namely find out correlations
between inductive sample features and corresponding categories, which suffers
from pseudo correlations between indecisive features and labels. We fuse SimCLR
and VIC-Reg via explicitly and dynamically establishing the original - positive
- negative sample pair as a minimal learning element, the deep model
iteratively establishes a relationship close to the causal one between features
and labels, while suppressing pseudo correlations. To further validate the
proposed model, and strengthen the established causal relationships, we develop
a human-in-the-loop strategy, with few guidance samples, to prune the
representation space directly. Finally, it is shown that the developed EiHi net
makes significant improvements in the most difficult and typical OoD dataset
Nico, compared with the current SOTA results, without any domain ($e.g.$
background, irrelevant features) information.
Related papers
- Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning [19.962212551963383]
Active Learning (AL) allows models to learn interactively from user feedback.
This paper introduces a counterfactual data augmentation approach to AL.
arXiv Detail & Related papers (2024-08-07T14:55:04Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Empowering Graph Invariance Learning with Deep Spurious Infomax [27.53568333416706]
We introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias.
EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76%$.
arXiv Detail & Related papers (2024-07-13T14:18:47Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Mitigate Domain Shift by Primary-Auxiliary Objectives Association for
Generalizing Person ReID [39.98444065846305]
ReID models struggle in learning domain-invariant representation solely through training on an instance classification objective.
We introduce a method that guides model learning of the primary ReID instance classification objective by a concurrent auxiliary learning objective on weakly labeled pedestrian saliency detection.
Our model can be extended with the recent test-time diagram to form the PAOA+, which performs on-the-fly optimization against the auxiliary objective.
arXiv Detail & Related papers (2023-10-24T15:15:57Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Neural Tangent Kernel Empowered Federated Learning [35.423391869982694]
Federated learning (FL) is a privacy-preserving paradigm where multiple participants jointly solve a machine learning problem without sharing raw data.
We propose a novel FL paradigm empowered by the neural tangent kernel (NTK) framework.
We show that the proposed paradigm can achieve the same accuracy while reducing the number of communication rounds by an order of magnitude.
arXiv Detail & Related papers (2021-10-07T17:58:58Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.