論文の概要: Improving Molecular Pretraining with Complementary Featurizations
- arxiv url: http://arxiv.org/abs/2209.15101v1
- Date: Thu, 29 Sep 2022 21:11:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 16:52:07.542101
- Title: Improving Molecular Pretraining with Complementary Featurizations
- Title(参考訳): 補体機能化による分子プレトレーニングの改善
- Authors: Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu
- Abstract要約: 分子プレトレーニング(英: molecular pretraining)は、計算化学と薬物発見における様々な課題を解決するためのパラダイムである。
化学情報を異なる方法で伝達できることが示される。
我々は, 簡易で効果的な分子事前学習フレームワーク(MOCO)を提案する。
- 参考スコア(独自算出の注目度): 20.86159731100242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular pretraining, which learns molecular representations over massive
unlabeled data, has become a prominent paradigm to solve a variety of tasks in
computational chemistry and drug discovery. Recently, prosperous progress has
been made in molecular pretraining with different molecular featurizations,
including 1D SMILES strings, 2D graphs, and 3D geometries. However, the role of
molecular featurizations with their corresponding neural architectures in
molecular pretraining remains largely unexamined. In this paper, through two
case studies -- chirality classification and aromatic ring counting -- we first
demonstrate that different featurization techniques convey chemical information
differently. In light of this observation, we propose a simple and effective
MOlecular pretraining framework with COmplementary featurizations (MOCO). MOCO
comprehensively leverages multiple featurizations that complement each other
and outperforms existing state-of-the-art models that solely relies on one or
two featurizations on a wide range of molecular property prediction tasks.
- Abstract(参考訳): 大量のラベルのないデータから分子表現を学習する分子前訓練は、計算化学や創薬における様々な課題を解決するための重要なパラダイムとなっている。
近年,1dスマイル弦,2dグラフ,3dジオメトリなど,分子運動の異なる分子前訓練が盛んに行われている。
しかし、分子前訓練における分子の破砕とそれに対応する神経構造の役割はほとんど検討されていない。
本稿では, キラリティ分類と芳香族環計数という2つのケーススタディを通じて, 異なる加工技術が化学情報を異なる方法で伝達することを示す。
そこで本研究では,この知見を踏まえて,相補的フィギュライゼーション(moco)を用いた簡便で効果的な分子プリトレーニングフレームワークを提案する。
MOCOは、互いに補完する複数の成果化を包括的に活用し、幅広い分子特性予測タスクにおいて1つまたは2つの成果化のみに依存する既存の最先端モデルより優れている。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
本稿では,最先端の化学モデルから導出した潜在空間を組み合わせた多視点手法を提案する。
分子構造をグラフとして表現するMHG-GNNの埋め込みと、化学言語に根ざしたMoLFormerの埋め込みである。
本稿では,既存の最先端手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-20T20:29:32Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
コンフォーマーアンサンブルを用いた学習の可能性を徹底的に評価するための,最初のMoleculAR Conformer Ensemble Learningベンチマークを導入する。
その結果,コンバータ空間からの直接学習は,様々なタスクやモデルの性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-09-29T20:06:46Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Supervised Pretraining for Molecular Force Fields and Properties
Prediction [16.86839767858162]
本研究では, 原子電荷と3次元ジオメトリーを入力とし, 分子エネルギーをラベルとする8800万分子のデータセット上で, ニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前訓練されたモデルを微調整すると、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスが大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-23T08:36:50Z) - Bidirectional Generation of Structure and Properties Through a Single
Molecular Foundation Model [44.60174246341653]
本稿では, 構造と生化学的性質を組み込んだ, 新規なマルチモーダル分子事前学習モデルを提案する。
提案するデータハンドリングおよびトレーニング目的のモデルパイプラインは、共通埋め込み空間における構造/プロパティの特徴を整合させる。
これらのコントリビューションは相乗的知識を生み出し、単一のモデルでマルチモーダルと非モーダルの両方の下流タスクに取り組むことができる。
論文 参考訳(メタデータ) (2022-11-19T05:16:08Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。