Modeling driver's evasive behavior during safety-critical lane
changes:Two-dimensional time-to-collision and deep reinforcement learning
- URL: http://arxiv.org/abs/2209.15133v1
- Date: Thu, 29 Sep 2022 23:23:38 GMT
- Title: Modeling driver's evasive behavior during safety-critical lane
changes:Two-dimensional time-to-collision and deep reinforcement learning
- Authors: Hongyu Guo, Kun Xie and Mehdi Keyvan-Ekbatani
- Abstract summary: This study aims to develop a lane-change-related evasive behavior model.
It can facilitate the development of safety-aware traffic simulations and predictive collision avoidance systems.
- Score: 19.649145869208617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane changes are complex driving behaviors and frequently involve
safety-critical situations. This study aims to develop a lane-change-related
evasive behavior model, which can facilitate the development of safety-aware
traffic simulations and predictive collision avoidance systems. Large-scale
connected vehicle data from the Safety Pilot Model Deployment (SPMD) program
were used for this study. A new surrogate safety measure, two-dimensional
time-to-collision (2D-TTC), was proposed to identify the safety-critical
situations during lane changes. The validity of 2D-TTC was confirmed by showing
a high correlation between the detected conflict risks and the archived
crashes. A deep deterministic policy gradient (DDPG) algorithm, which could
learn the sequential decision-making process over continuous action spaces, was
used to model the evasive behaviors in the identified safety-critical
situations. The results showed the superiority of the proposed model in
replicating both the longitudinal and lateral evasive behaviors.
Related papers
- AI2-Active Safety: AI-enabled Interaction-aware Active Safety Analysis with Vehicle Dynamics [8.557684007368046]
This paper introduces an AI-enabled, interaction-aware active safety analysis framework.
The framework employs a bicycle model-augmented with road gradient considerations to accurately capture vehicle dynamics.
In parallel, a hypergraph-based AI model is developed to predict probabilistic trajectories of ambient traffic.
arXiv Detail & Related papers (2025-05-01T05:46:34Z) - Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers.
Previous models fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction.
We introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms.
arXiv Detail & Related papers (2025-02-27T13:43:17Z) - Control-ITRA: Controlling the Behavior of a Driving Model [14.31198056147624]
We introduce a method called Control-ITRA to influence agent behavior through waypoint assignment and target speed modulation.
We demonstrate that our method can generate controllable, infraction-free trajectories while preserving realism in both seen and unseen locations.
arXiv Detail & Related papers (2025-01-17T03:35:11Z) - Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections [9.041849642602626]
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles.
This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called DSC-Diffuser.
To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles.
arXiv Detail & Related papers (2024-11-29T11:57:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
Traffic accidents frequently lead to fatal injuries, contributing to over 50 million deaths until 2023.
Previous research primarily assessed the importance of individual participants, treating them as independent entities.
We introduce Driving scene Relationship self-Understanding transformer (DRUformer) to enhance the important object detection task.
arXiv Detail & Related papers (2023-11-11T07:26:47Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Memory-Augmented Multi-Task Collaborative Framework for Unsupervised
Traffic Accident Detection in Driving Videos [22.553356096143734]
We propose a novel memory-augmented multi-task collaborative framework (MAMTCF) for unsupervised traffic accident detection in driving videos.
Our method can more accurately detect both ego-involved and non-ego accidents by simultaneously modeling appearance changes and object motions in video frames.
arXiv Detail & Related papers (2023-07-27T01:45:13Z) - Self-Awareness Safety of Deep Reinforcement Learning in Road Traffic
Junction Driving [20.85562165500152]
In a road traffic junction scenario, the vehicle typically receives partial observations from the transportation environment.
In this study, we evaluated the safety performance of three baseline DRL models (DQN, A2C, and PPO)
Our proposed self-awareness attention-DQN can significantly improve the safety performance in intersection and roundabout scenarios.
arXiv Detail & Related papers (2022-01-20T11:21:33Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes.
The system can warn of upcoming risks immediately in the field and improve the safety of risk frequent areas by assessing the safety levels of roads without actual collisions.
arXiv Detail & Related papers (2021-07-26T23:00:56Z) - Driving-Policy Adaptive Safeguard for Autonomous Vehicles Using
Reinforcement Learning [19.71676985220504]
This paper proposes a driving-policy adaptive safeguard (DPAS) design, including a collision avoidance strategy and an activation function.
The driving-policy adaptive activation function should dynamically assess current driving policy risk and kick in when an urgent threat is detected.
The results are calibrated by naturalistic driving data and show that the proposed safeguard reduces the collision rate significantly without introducing more interventions.
arXiv Detail & Related papers (2020-12-02T08:01:53Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
Key challenge in applying reinforcement learning to safety-critical domains is understanding how to balance exploration and safety.
We propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in MDPs with unknown, dynamics.
Our method exploits analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP sense.
arXiv Detail & Related papers (2020-07-07T15:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.