Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
- URL: http://arxiv.org/abs/2412.00162v2
- Date: Mon, 31 Mar 2025 08:57:52 GMT
- Title: Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
- Authors: Di Chen, Ruiguo Zhong, Kehua Chen, Zhiwei Shang, Meixin Zhu, Edward Chung,
- Abstract summary: Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles.<n>This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called DSC-Diffuser.<n>To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles.
- Score: 9.041849642602626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
Related papers
- Safety-Critical Traffic Simulation with Guided Latent Diffusion Model [8.011306318131458]
Safety-critical traffic simulation plays a crucial role in evaluating autonomous driving systems.
We propose a guided latent diffusion model (LDM) capable of generating physically realistic and adversarial scenarios.
Our work provides an effective tool for realistic safety-critical scenario simulation, paving the way for more robust evaluation of autonomous driving systems.
arXiv Detail & Related papers (2025-05-01T13:33:34Z) - AI2-Active Safety: AI-enabled Interaction-aware Active Safety Analysis with Vehicle Dynamics [8.557684007368046]
This paper introduces an AI-enabled, interaction-aware active safety analysis framework.
The framework employs a bicycle model-augmented with road gradient considerations to accurately capture vehicle dynamics.
In parallel, a hypergraph-based AI model is developed to predict probabilistic trajectories of ambient traffic.
arXiv Detail & Related papers (2025-05-01T05:46:34Z) - Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.
Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.
These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles [12.607007386467329]
We present SafeCast, a risk-responsive motion forecasting model.
It integrates safety-aware decision-making with uncertainty-aware adaptability.
Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency.
arXiv Detail & Related papers (2025-03-28T15:38:21Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
We propose a novel approach for optimal online motion planning with minimal information about dynamic obstacles.
The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance.
We show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
arXiv Detail & Related papers (2025-01-16T16:45:08Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuser is an adversarial framework for generating safety-critical driving scenarios through guided diffusion.
We show that AdvDiffuser can be applied to various tested systems with minimal warm-up episode data.
arXiv Detail & Related papers (2024-10-11T02:03:21Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Safety-aware Causal Representation for Trustworthy Offline Reinforcement
Learning in Autonomous Driving [33.672722472758636]
offline Reinforcement Learning(RL) approaches exhibit notable efficacy in addressing sequential decision-making problems from offline datasets.
We introduce the saFety-aware strUctured Scenario representatION ( Fusion) to facilitate the learning of a generalizable end-to-end driving policy.
Empirical evidence in various driving scenarios attests that Fusion significantly enhances the safety and generalizability of autonomous driving agents.
arXiv Detail & Related papers (2023-10-31T18:21:24Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Risk-Constrained Interactive Safety under Behavior Uncertainty for
Autonomous Driving [0.0]
Safety envelopes which restrict the allowed planning region yield interpretable safety under the presence of behavior uncertainty.
Humans balance safety and efficiency in dense traffic by accepting a probabilistic risk of violating the safety envelope.
arXiv Detail & Related papers (2021-02-05T08:33:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.