論文の概要: Variable-Based Calibration for Machine Learning Classifiers
- arxiv url: http://arxiv.org/abs/2209.15154v1
- Date: Fri, 30 Sep 2022 00:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 16:10:01.145086
- Title: Variable-Based Calibration for Machine Learning Classifiers
- Title(参考訳): 機械学習分類器の可変ベース校正
- Authors: Markelle Kelly and Padhraic Smyth
- Abstract要約: モデルのキャリブレーション特性を特徴付けるために,変数ベースのキャリブレーションの概念を導入する。
ほぼ完全なキャリブレーション誤差を持つモデルでは,データの特徴の関数として,変数ベースのキャリブレーション誤差が顕著であることがわかった。
- 参考スコア(独自算出の注目度): 11.9995808096481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of machine learning classifiers in high-stakes domains
requires well-calibrated confidence scores for model predictions. In this paper
we introduce the notion of variable-based calibration to characterize
calibration properties of a model with respect to a variable of interest,
generalizing traditional score-based calibration and metrics such as expected
calibration error (ECE). In particular, we find that models with near-perfect
ECE can exhibit significant variable-based calibration error as a function of
features of the data. We demonstrate this phenomenon both theoretically and in
practice on multiple well-known datasets, and show that it can persist after
the application of existing recalibration methods. To mitigate this issue, we
propose strategies for detection, visualization, and quantification of
variable-based calibration error. We then examine the limitations of current
score-based recalibration methods and explore potential modifications. Finally,
we discuss the implications of these findings, emphasizing that an
understanding of calibration beyond simple aggregate measures is crucial for
endeavors such as fairness and model interpretability.
- Abstract(参考訳): 高度な領域に機械学習分類器を配置するには、モデル予測に十分な信頼性スコアが必要となる。
本稿では,従来のスコアベースのキャリブレーションを一般化し,期待キャリブレーション誤差(ECE)などの指標を一般化し,モデルのキャリブレーション特性を特徴付ける変数ベースのキャリブレーションの概念を提案する。
特に、ECEがほぼ完全であるモデルでは、データの特徴の関数として変数ベースのキャリブレーション誤差が顕著であることがわかった。
この現象を理論上,実際に複数のよく知られたデータセット上で実証し,既存の再校正法の適用後も継続可能であることを示す。
この問題を軽減するため,変数ベースの校正誤差の検出,可視化,定量化のための手法を提案する。
次に,現在のスコアベース再校正法の限界について検討し,潜在的な修正について検討する。
最後に,これらの知見の意義について考察し,公平性やモデル解釈可能性といった努力には,単純な集計尺度以上の校正の理解が不可欠であることを強調する。
関連論文リスト
- Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
本稿では,2乗キャリブレーション誤差の推定器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
キャリブレーション誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:58:06Z) - Reassessing How to Compare and Improve the Calibration of Machine Learning Models [7.183341902583164]
結果の予測確率がモデル予測に基づいてその結果の観測周波数と一致した場合、機械学習モデルを校正する。
キャリブレーションと予測の指標が追加の一般化の指標を伴わない限り、最先端のように見えるような簡単な再校正手法が存在することを示す。
論文 参考訳(メタデータ) (2024-06-06T13:33:45Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Enabling Calibration In The Zero-Shot Inference of Large Vision-Language
Models [58.720142291102135]
プロンプト、データセット、アーキテクチャといった関連する変数のキャリブレーションを測定し、CLIPによるゼロショット推論が誤校正されていることを見つけます。
学習した1つの温度は、推論データセットにまたがって特定のCLIPモデルごとに一般化され、選択が促される。
論文 参考訳(メタデータ) (2023-03-11T17:14:04Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Calibration tests beyond classification [30.616624345970973]
ほとんどの教師付き機械学習タスクは、既約予測エラーを被る。
確率論的予測モデルは、妥当な目標に対する信念を表す確率分布を提供することによって、この制限に対処する。
校正されたモデルは、予測が過信でも過信でもないことを保証します。
論文 参考訳(メタデータ) (2022-10-21T09:49:57Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Estimating Expected Calibration Errors [1.52292571922932]
確率論的予測の不確実性は、モデルが人間の意思決定をサポートするために使用される場合、重要な問題である。
ほとんどのモデルは本質的に十分に校正されていないため、決定スコアは後続確率と一致しない。
我々は、$ECE$推定器の品質を定量化するための実証的な手順を構築し、それを使用して、異なる設定で実際にどの推定器を使用するべきかを決定する。
論文 参考訳(メタデータ) (2021-09-08T08:00:23Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。