論文の概要: Equitable Marketplace Mechanism Design
- arxiv url: http://arxiv.org/abs/2209.15418v1
- Date: Thu, 22 Sep 2022 20:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:20:00.615154
- Title: Equitable Marketplace Mechanism Design
- Title(参考訳): Equitable Marketplaceのメカニズム設計
- Authors: Kshama Dwarakanath, Svitlana S Vyetrenko, Tucker Balch
- Abstract要約: 多様な取引戦略と目的を持つトレーダーが居住する取引市場について検討する。
この作業の目標は、すべてのトレーダーに平等で利益がある市場のための動的な手数料スケジュールを設計することである。
市場手数料のスケジュールと取引戦略を同時に学習するための強化学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a trading marketplace that is populated by traders with diverse
trading strategies and objectives. The marketplace allows the suppliers to list
their goods and facilitates matching between buyers and sellers. In return,
such a marketplace typically charges fees for facilitating trade. The goal of
this work is to design a dynamic fee schedule for the marketplace that is
equitable and profitable to all traders while being profitable to the
marketplace at the same time (from charging fees). Since the traders adapt
their strategies to the fee schedule, we present a reinforcement learning
framework for simultaneously learning a marketplace fee schedule and trading
strategies that adapt to this fee schedule using a weighted optimization
objective of profits and equitability. We illustrate the use of the proposed
approach in detail on a simulated stock exchange with different types of
investors, specifically market makers and consumer investors. As we vary the
equitability weights across different investor classes, we see that the learnt
exchange fee schedule starts favoring the class of investors with the highest
weight. We further discuss the observed insights from the simulated stock
exchange in light of the general framework of equitable marketplace mechanism
design.
- Abstract(参考訳): 我々は、多様な取引戦略と目的を持つトレーダーが居住する取引市場を考える。
マーケットプレースでは、サプライヤーが商品をリストアップし、買い手と売り手のマッチングを容易にする。
その見返りとして、このようなマーケットプレイスは通常、取引を促進するための手数料を請求する。
この作業の目標は、すべてのトレーダーに平等で利益を上げつつ、同時に(課金手数料から)市場に利益をもたらすマーケットプレイスのダイナミックな料金スケジュールを設計することである。
取引業者は、手数料スケジュールに戦略を適応させるため、利益と公平性の重み付き最適化目標を用いて、市場手数料スケジュールとこの料金スケジュールに適合する取引戦略を同時に学習するための強化学習フレームワークを提案する。
提案手法を、さまざまなタイプの投資家、特に市場メーカーと消費者投資家との模擬株式交換で詳細に説明した。
さまざまな投資家クラスで公平性の重み付けが変わると、学習交換手数料のスケジュールが投資家クラスを最も重み付けていることが分かる。
さらに、均等市場機構設計の一般的な枠組みを踏まえて、模擬取引所から観測された知見について考察する。
関連論文リスト
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
フェデレートラーニング(FL)は、局所的な分散データを用いたトレーニングモデルにおいて、その効果がますます認識されている。
FLはモデルのマーケットプレースであり、顧客は買い手と売り手の両方として振る舞う。
本稿では,性能向上に基づく適切な価格設定を実現するため,オークションベースのソリューションを提案する。
論文 参考訳(メタデータ) (2024-02-02T07:25:53Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
本稿では,学習した予測モデルからの信号に基づいて処理を行う強化学習(RL)アルゴリズムを提案する。
われわれのアルゴリズムは、ブルサ・マレーシアの20年以上のエクイティデータに基づいてテストしている。
論文 参考訳(メタデータ) (2023-07-18T16:00:02Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
金融市場では、機械学習ベースのモデルの実践的応用を妨げるいくつかの課題がある。
本稿では,金融機関とトレーダーの役割を模倣する新たな進化モデルであるTrader-Company法を提案する。
トレーダーと呼ばれる複数の弱い学習者からの提案を集約し、将来の株式リターンを予測します。
論文 参考訳(メタデータ) (2020-12-18T13:19:27Z) - Beating the market with a bad predictive model [0.0]
我々は、価格予測モデルに完全に劣る体系的な利益を一般的に得ることを証明している。
鍵となるアイデアは、予測モデルのトレーニング目標を変更して、それを市場から明示的にデコレーションすることだ。
論文 参考訳(メタデータ) (2020-10-23T16:20:35Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z) - QuantNet: Transferring Learning Across Systematic Trading Strategies [2.012425476229879]
QuantNet(QuantNet)は、市場に依存しないトレンドを学習し、これらを使用して市場固有の取引戦略の優れた学習を行うアーキテクチャである。
58のグローバルエクイティマーケットにおける3103資産の履歴データに基づいてQuantNetを評価する。
論文 参考訳(メタデータ) (2020-04-07T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。