論文の概要: Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models
- arxiv url: http://arxiv.org/abs/2410.06935v1
- Date: Wed, 9 Oct 2024 14:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:27:23.617444
- Title: Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models
- Title(参考訳): 技術指標の統合と分類モデルによるBitcoin市場の動向予測
- Authors: Abdelatif Hafid, Mohamed Rahouti, Linglong Kong, Maad Ebrahim, Mohamed Adel Serhani,
- Abstract要約: 本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
- 参考スコア(独自算出の注目度): 6.39158540499473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to the high potential for profit, trading has become increasingly attractive to investors as the cryptocurrency and stock markets rapidly expand. However, because financial markets are intricate and dynamic, accurately predicting prices remains a significant challenge. The volatile nature of the cryptocurrency market makes it even harder for traders and investors to make decisions. This study presents a machine learning model based on classification to forecast the direction of the cryptocurrency market, i.e., whether prices will increase or decrease. The model is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and Bollinger Bands. We illustrate our approach with an empirical study of the closing price of Bitcoin. Several simulations, including a confusion matrix and Receiver Operating Characteristic curve, are used to assess the model's performance, and the results show a buy/sell signal accuracy of over 92%. These findings demonstrate how machine learning models can assist investors and traders of cryptocurrencies in making wise/informed decisions in a very volatile market.
- Abstract(参考訳): 暗号通貨と株式市場が急速に拡大するにつれ、利益の可能性が高まっているため、トレーディングは投資家にとってますます魅力的になっている。
しかし、金融市場は複雑で動的であるため、正確な価格予測は重要な課題である。
暗号通貨市場の不安定な性質は、トレーダーや投資家が決定を下すのをさらに困難にしている。
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
このモデルは、移動平均収束ディバージェンス、相対強度指数、ボリンジャーバンドなど、歴史的なデータと重要な技術指標を用いて訓練されている。
当社のアプローチを、Bitcoinの閉鎖価格に関する実証的研究で説明します。
混乱行列と受信器動作特性曲線を含むいくつかのシミュレーションがモデルの性能評価に用いられ、その結果、購入・販売信号の精度は92%以上である。
これらの結果は、機械学習モデルが投資家や暗号通貨のトレーダーが、非常に不安定な市場で賢明かつインフォームドな決定を下すのにどのように役立つかを示している。
関連論文リスト
- Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning [1.3053649021965603]
本研究は,暗号通貨予測における感情指標の重要性に関する予備研究である。
我々は、Fear & Greedy Index、市場感情の指標、技術分析指標、および機械学習アルゴリズムの可能性を組み合わせることで、Bitcoin価格を予測する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-18T15:13:07Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin [0.3069335774032178]
本研究は,アルゴリズム取引におけるビットコイン価格の予測において,21の分類器と20の回帰器を含む41の機械学習モデルの性能を評価する。
我々の包括的な分析は、各モデルの強みと限界を明らかにし、効果的な取引戦略を開発する上で重要な洞察を与えます。
論文 参考訳(メタデータ) (2024-07-09T13:07:43Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Forecasting Bitcoin volatility spikes from whale transactions and
CryptoQuant data using Synthesizer Transformer models [5.88864611435337]
ボラティリティ予測のためのディープラーニング合成器変換器モデルを提案する。
以上の結果から,既存の最先端モデルよりも優れたモデルであることが示唆された。
提案手法はビットコイン市場における極端なボラティリティ(変動性)の動きを予測するための有用なツールであることを示す。
論文 参考訳(メタデータ) (2022-10-06T05:44:29Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。