論文の概要: Learning Second Order Local Anomaly for General Face Forgery Detection
- arxiv url: http://arxiv.org/abs/2209.15490v1
- Date: Fri, 30 Sep 2022 14:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 15:50:40.287365
- Title: Learning Second Order Local Anomaly for General Face Forgery Detection
- Title(参考訳): 顔偽検出のための第2次局所異常学習
- Authors: Jianwei Fei, Yunshu Dai, Peipeng Yu, Tianrun Shen, Zhihua Xia, Jian
Weng
- Abstract要約: 本稿では,CNNを用いた顔偽造検知器の一般化能力向上のための新しい手法を提案する。
具体的には,局所的な異常をマイニングするための2次局所異常(SOLA)学習モジュールを提案する。
また、実地と偽地の局所的特徴の識別を改善するための局所拡張モジュール(LEM)を提案する。
- 参考スコア(独自算出の注目度): 7.6896977871741985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a novel method to improve the generalization ability
of CNN-based face forgery detectors. Our method considers the feature anomalies
of forged faces caused by the prevalent blending operations in face forgery
algorithms. Specifically, we propose a weakly supervised Second Order Local
Anomaly (SOLA) learning module to mine anomalies in local regions using deep
feature maps. SOLA first decomposes the neighborhood of local features by
different directions and distances and then calculates the first and second
order local anomaly maps which provide more general forgery traces for the
classifier. We also propose a Local Enhancement Module (LEM) to improve the
discrimination between local features of real and forged regions, so as to
ensure accuracy in calculating anomalies. Besides, an improved Adaptive Spatial
Rich Model (ASRM) is introduced to help mine subtle noise features via
learnable high pass filters. With neither pixel level annotations nor external
synthetic data, our method using a simple ResNet18 backbone achieves
competitive performances compared with state-of-the-art works when evaluated on
unseen forgeries.
- Abstract(参考訳): 本研究では,cnnベースの顔偽造検出器の一般化能力を向上させる新しい手法を提案する。
本手法は,顔偽造アルゴリズムのブレンディング操作によって生じる偽造顔の特徴的異常を考察する。
具体的には,深層特徴マップを用いて局所的な異常をマイニングするための,弱教師付き2次局所異常学習モジュールを提案する。
SOLAはまず、異なる方向と距離で局所特徴の近傍を分解し、次に分類器のより一般的な偽トレースを提供する第1および第2の局所異常写像を計算する。
また,実領域と鍛造領域の局所特徴の識別を改善し,異常の計算精度を確保するための局所拡張モジュール(lem)を提案する。
さらに、学習可能なハイパスフィルタによる微妙なノイズ特徴のマイニングを支援するために、改良された適応空間リッチモデル(ASRM)が導入された。
画素レベルのアノテーションも外部合成データも使用せず、単純なResNet18バックボーンを用いた手法は、見えない偽造品で評価した場合の最先端処理と比較して、競争性能が向上する。
関連論文リスト
- Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Region-Based Semantic Factorization in GANs [67.90498535507106]
本稿では,任意の画像領域についてGAN(Generative Adversarial Networks)が学習した潜在意味を分解するアルゴリズムを提案する。
適切に定義された一般化されたレイリー商を通して、アノテーションや訓練なしにそのような問題を解く。
様々な最先端のGANモデルに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-19T17:46:02Z) - Denoised Non-Local Neural Network for Semantic Segmentation [18.84185406522064]
クラス間ノイズとクラス内ノイズをそれぞれ除去するデノナイズド非ローカネットワーク(デノナイズドNL)を提案する。
提案したNLは,都市景観における83.5%,46.69% mIoU,ADE20Kの最先端性能を達成できる。
論文 参考訳(メタデータ) (2021-10-27T06:16:31Z) - Local Relation Learning for Face Forgery Detection [73.73130683091154]
局所的関係学習による顔の偽造検出の新たな視点を提案する。
具体的には,局所的な特徴間の類似度を測定するMPSM(Multi-scale Patch similarity Module)を提案する。
また、より包括的な局所特徴表現のために、RGBおよび周波数領域の情報を融合するRGB-Frequency Attention Module (RFAM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T10:44:32Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - ASLFeat: Learning Local Features of Accurate Shape and Localization [42.70030492742363]
ASLFeatを3つの軽量かつ効果的に修正し、上記の問題を緩和する。
まず、変形可能な畳み込みネットワークを用いて局所変換を密に推定、適用する。
第2に,空間分解能と低レベル細部を復元する特徴階層を利用して,正確なキーポイント位置推定を行う。
論文 参考訳(メタデータ) (2020-03-23T04:03:03Z) - Deep Fusion of Local and Non-Local Features for Precision Landslide
Recognition [17.896249114628336]
本稿では,局所的特徴と非局所的特徴を融合して文脈問題を克服する効果的な手法を提案する。
リモートセンシングコミュニティで広く採用されているU-Netアーキテクチャを基盤として,さらに2つのモジュールを利用する。
実験により,提案手法は最先端の汎用的セマンティックセグメンテーション手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-02-20T03:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。