論文の概要: Predictive Inference with Feature Conformal Prediction
- arxiv url: http://arxiv.org/abs/2210.00173v1
- Date: Sat, 1 Oct 2022 02:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 13:13:46.085768
- Title: Predictive Inference with Feature Conformal Prediction
- Title(参考訳): 特徴整形予測を用いた予測推論
- Authors: Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang
Yuan
- Abstract要約: 本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
特徴共形予測は、軽度仮定下では正則共形予測よりも確実に優れていることを示す。
- 参考スコア(独自算出の注目度): 80.77443423828315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal prediction is a distribution-free technique for establishing valid
prediction intervals. Although conventionally people conduct conformal
prediction in the output space, this is not the only possibility. In this
paper, we propose feature conformal prediction, which extends the scope of
conformal prediction to semantic feature spaces by leveraging the inductive
bias of deep representation learning. From a theoretical perspective, we
demonstrate that feature conformal prediction provably outperforms regular
conformal prediction under mild assumptions. Our approach could be combined
with not only vanilla conformal prediction, but also other adaptive conformal
prediction methods. Experiments on various predictive inference tasks
corroborate the efficacy of our method.
- Abstract(参考訳): 共形予測(conformal prediction)は、有効な予測間隔を確立するための分散フリーな手法である。
従来、人々は出力空間で共形予測を行うが、これは唯一の可能性ではない。
本稿では, 深層表現学習の帰納バイアスを利用して, 意味的特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは, 特徴共形予測が軽度仮定下での正則共形予測よりも優れていることを実証する。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
様々な予測推論タスクの実験は,本手法の有効性を裏付けるものである。
関連論文リスト
- Conformal Prediction for Hierarchical Data [5.580128181112309]
コンフォーマル予測と予測再構成を組み合わせた第1ステップを提案する。
予測セットの効率を向上しつつ,SCPが付与した妥当性が保たれていることを示す。
論文 参考訳(メタデータ) (2024-11-20T17:26:26Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformal online model aggregation [29.43493007296859]
本稿では,オンライン環境における共形モデルアグリゲーションへの新たなアプローチを提案する。
これは、過去の性能に基づいてモデルの重みが時間とともに適応される投票によって、いくつかのアルゴリズムの予測セットを組み合わせることに基づいている。
論文 参考訳(メタデータ) (2024-03-22T15:40:06Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
コンフォーマル予測器は、ユーザ定義の信頼性レベルで予測を行うことができる。
我々は,共形予測器を直接最大予測効率で訓練する手法を検討する。
実世界の複数のデータセット上で本手法を検証し,本手法が有望であることを示す。
論文 参考訳(メタデータ) (2021-05-24T13:14:41Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Short-term prediction of Time Series based on bounding techniques [0.0]
本稿では,新しい非パラメトリック手法を用いて時系列フレームワークの予測問題を再考する。
この革新は、予測誤差の上限を得るために、決定論的および決定論的確率的仮定の両方を考慮することである。
提案する予測器が予測スキームにおいて適切な結果を得ることができ、古典的非パラメトリック法に対する興味深い代替手段であることを示すためのベンチマークを含む。
論文 参考訳(メタデータ) (2021-01-26T11:27:36Z) - Validity, consonant plausibility measures, and conformal prediction [7.563864405505623]
本稿では,他の予測関連タスクに関連する2型妥当性という新しい概念を提案する。
本研究では、共形予測出力を子音可聴性尺度の輪郭関数として解釈することにより、どちらの種類の予測精度も達成可能であることを示す。
論文 参考訳(メタデータ) (2020-01-24T23:24:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。