論文の概要: Conformal Prediction for Hierarchical Data
- arxiv url: http://arxiv.org/abs/2411.13479v1
- Date: Wed, 20 Nov 2024 17:26:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:52.010848
- Title: Conformal Prediction for Hierarchical Data
- Title(参考訳): 階層データの等角予測
- Authors: Guillaume Principato, Yvenn Amara-Ouali, Yannig Goude, Bachir Hamrouche, Jean-Michel Poggi, Gilles Stoltz,
- Abstract要約: コンフォーマル予測と予測再構成を組み合わせた第1ステップを提案する。
予測セットの効率を向上しつつ,SCPが付与した妥当性が保たれていることを示す。
- 参考スコア(独自算出の注目度): 5.580128181112309
- License:
- Abstract: Reconciliation has become an essential tool in multivariate point forecasting for hierarchical time series. However, there is still a lack of understanding of the theoretical properties of probabilistic Forecast Reconciliation techniques. Meanwhile, Conformal Prediction is a general framework with growing appeal that provides prediction sets with probabilistic guarantees in finite sample. In this paper, we propose a first step towards combining Conformal Prediction and Forecast Reconciliation by analyzing how including a reconciliation step in the Split Conformal Prediction (SCP) procedure enhances the resulting prediction sets. In particular, we show that the validity granted by SCP remains while improving the efficiency of the prediction sets. We also advocate a variation of the theoretical procedure for practical use. Finally, we illustrate these results with simulations.
- Abstract(参考訳): 階層的時系列の多変量点予測において、和解は重要なツールとなっている。
しかし、確率的予測再構成手法の理論的性質についてはまだ理解されていない。
一方、コンフォーマル予測(Conformal Prediction)は、有限サンプルにおける確率的保証を備えた予測セットを提供する、魅力を増す一般的なフレームワークである。
本稿では,SCP (Split Conformal Prediction) 手法において,コンフォーマル予測 (Conformal Prediction) とフォアキャスト再構成 (Forecast Reconciliation) を組み合わせるための第一歩として,コンフォーマル予測 (Conformal Reconciliation) とコンフォーマル予測 (Forecast Reconciliation) を併用した手法を提案する。
特に,予測セットの効率を向上しつつ,SCPが付与した妥当性が維持されていることを示す。
また,実用化のための理論的手続きのバリエーションも提唱する。
最後に、これらの結果をシミュレーションで説明する。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformalized Late Fusion Multi-View Learning [18.928543069018865]
多視点学習の不確かさの定量化は、科学的な問題における多視点データの利用の増加によって動機づけられる。
個別のビューで個別の予測器を訓練し、単一のビュー予測が利用可能になった後にそれらを組み合わせます。
本稿では,共形予測を単一ビュー予測器上で個別に行う手法として,MVCP(Multi-View Conformal Prediction)を提案する。
論文 参考訳(メタデータ) (2024-05-25T14:11:01Z) - Conformal Prediction with Learned Features [22.733758606168873]
本稿では,予測セットの条件付き妥当性を向上させるために,PLCP(Partition Learning Conformal Prediction)を提案する。
我々は,市販の機械学習モデルを用いて,勾配の交互化によるPLCPを効率的に実装する。
4つの実世界および合成データセットに対する実験結果から,PLCPの優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-26T15:43:06Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
分割共形予測フレームワークを用いて,予測セットの予測サイズを理論的に定量化する。
この正確な定式化は通常直接計算できないので、点推定と高確率境界間隔を導出する。
回帰と分類の両問題に対する実世界のデータセットを用いた実験により,結果の有効性を裏付ける。
論文 参考訳(メタデータ) (2023-06-12T17:22:57Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Conformal prediction set for time-series [16.38369532102931]
不確かさの定量化は複雑な機械学習手法の研究に不可欠である。
我々は,時系列の予測セットを構築するために,ERAPS(Ensemble Regularized Adaptive Prediction Set)を開発した。
ERAPSによる有意な限界被覆と条件被覆を示し、競合する手法よりも予測セットが小さい傾向にある。
論文 参考訳(メタデータ) (2022-06-15T23:48:53Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。