Solving Coupled Differential Equation Groups Using PINO-CDE
- URL: http://arxiv.org/abs/2210.00222v2
- Date: Fri, 23 Jun 2023 06:16:24 GMT
- Title: Solving Coupled Differential Equation Groups Using PINO-CDE
- Authors: Wenhao Ding, Qing He, Hanghang Tong, Qingjing Wang, Ping Wang
- Abstract summary: PINO-CDE is a deep learning framework for solving coupled differential equation groups (CDEs)
Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs.
This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.
- Score: 42.363646159367946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a fundamental mathmatical tool in many engineering disciplines, coupled
differential equation groups are being widely used to model complex structures
containing multiple physical quantities. Engineers constantly adjust structural
parameters at the design stage, which requires a highly efficient solver. The
rise of deep learning technologies has offered new perspectives on this task.
Unfortunately, existing black-box models suffer from poor accuracy and
robustness, while the advanced methodologies of single-output operator
regression cannot deal with multiple quantities simultaneously. To address
these challenges, we propose PINO-CDE, a deep learning framework for solving
coupled differential equation groups (CDEs) along with an equation
normalization algorithm for performance enhancing. Based on the theory of
physics-informed neural operator (PINO), PINO-CDE uses a single network for all
quantities in a CDEs, instead of training dozens, or even hundreds of networks
as in the existing literature. We demonstrate the flexibility and feasibility
of PINO-CDE for one toy example and two engineering applications: vehicle-track
coupled dynamics (VTCD) and reliability assessment for a four-storey building
(uncertainty propagation). The performance of VTCD indicates that PINO-CDE
outperforms existing software and deep learning-based methods in terms of
efficiency and precision, respectively. For the uncertainty propagation task,
PINO-CDE provides higher-resolution results in less than a quarter of the time
incurred when using the probability density evolution method (PDEM). This
framework integrates engineering dynamics and deep learning technologies and
may reveal a new concept for CDEs solving and uncertainty propagation.
Related papers
- A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
We introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems.
CoRes consistently outperforms competing methods in solving a broad range of benchmark problems.
We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
arXiv Detail & Related papers (2024-01-07T14:09:42Z) - A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
We introduce the concept of the Neural Combinatorial Wavelet Neural Operator (NCWNO) as a foundational model for scientific computing.
The NCWNO is specifically designed to excel in learning from a diverse spectrum of physics and continuously adapt to the solution operators associated with parametric partial differential equations (PDEs)
The proposed foundational model offers two key advantages: (i) it can simultaneously learn solution operators for multiple parametric PDEs, and (ii) it can swiftly generalize to new parametric PDEs with minimal fine-tuning.
arXiv Detail & Related papers (2023-10-29T03:20:10Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs) to be considered as one such solver.
PINNs have pioneered a proper integration of deep-learning and scientific computing, but they require repetitive time-consuming training of neural networks.
We propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm.
arXiv Detail & Related papers (2023-10-14T08:13:43Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
We show that quantization can successfully lower the computational cost of inference while maintaining performance.
Our results on four standard PDE datasets and three network architectures show that quantization-aware training works across settings and three orders of FLOPs magnitudes.
arXiv Detail & Related papers (2023-08-14T09:21:19Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - KoopmanLab: machine learning for solving complex physics equations [7.815723299913228]
We present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms.
Our module consists of multiple variants of the Koopman neural operator (KNO), a kind of mesh-independent neural-network-based PDE solvers.
The compact variants of KNO can accurately solve PDEs with small model sizes while the large variants of KNO are more competitive in predicting highly complicated dynamic systems.
arXiv Detail & Related papers (2023-01-03T13:58:39Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering.
We propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system.
In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions.
arXiv Detail & Related papers (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.