A foundational neural operator that continuously learns without
forgetting
- URL: http://arxiv.org/abs/2310.18885v1
- Date: Sun, 29 Oct 2023 03:20:10 GMT
- Title: A foundational neural operator that continuously learns without
forgetting
- Authors: Tapas Tripura and Souvik Chakraborty
- Abstract summary: We introduce the concept of the Neural Combinatorial Wavelet Neural Operator (NCWNO) as a foundational model for scientific computing.
The NCWNO is specifically designed to excel in learning from a diverse spectrum of physics and continuously adapt to the solution operators associated with parametric partial differential equations (PDEs)
The proposed foundational model offers two key advantages: (i) it can simultaneously learn solution operators for multiple parametric PDEs, and (ii) it can swiftly generalize to new parametric PDEs with minimal fine-tuning.
- Score: 1.0878040851638
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has witnessed substantial growth, leading to the development
of advanced artificial intelligence models crafted to address a wide range of
real-world challenges spanning various domains, such as computer vision,
natural language processing, and scientific computing. Nevertheless, the
creation of custom models for each new task remains a resource-intensive
undertaking, demanding considerable computational time and memory resources. In
this study, we introduce the concept of the Neural Combinatorial Wavelet Neural
Operator (NCWNO) as a foundational model for scientific computing. This model
is specifically designed to excel in learning from a diverse spectrum of
physics and continuously adapt to the solution operators associated with
parametric partial differential equations (PDEs). The NCWNO leverages a gated
structure that employs local wavelet experts to acquire shared features across
multiple physical systems, complemented by a memory-based ensembling approach
among these local wavelet experts. This combination enables rapid adaptation to
new challenges. The proposed foundational model offers two key advantages: (i)
it can simultaneously learn solution operators for multiple parametric PDEs,
and (ii) it can swiftly generalize to new parametric PDEs with minimal
fine-tuning. The proposed NCWNO is the first foundational operator learning
algorithm distinguished by its (i) robustness against catastrophic forgetting,
(ii) the maintenance of positive transfer for new parametric PDEs, and (iii)
the facilitation of knowledge transfer across dissimilar tasks. Through an
extensive set of benchmark examples, we demonstrate that the NCWNO can
outperform task-specific baseline operator learning frameworks with minimal
hyperparameter tuning at the prediction stage. We also show that with minimal
fine-tuning, the NCWNO performs accurate combinatorial learning of new
parametric PDEs.
Related papers
- DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
We propose a novel fine-tuning method to achieve multi-operator learning.
Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning.
arXiv Detail & Related papers (2024-11-11T18:58:46Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - LeMON: Learning to Learn Multi-Operator Networks [0.6554326244334868]
Single-operator learning involves training a deep neural network to learn a specific operator.
Recent work in multi-operator learning uses an operator embedding structure to train a single neural network on data from multiple operators.
We propose pretraining and fine-tuning strategies for solving PDEs using multi-operator learning.
arXiv Detail & Related papers (2024-08-28T23:20:03Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
We introduce Neural Regression (NPR), a novel framework specifically developed for learning solution operators in Partial Differential Equations (PDEs)
NPR employs Physics-Informed Neural Network (PINN, Raissi et al., 2021) techniques to regress Neural Network (NN) parameters.
The framework shows remarkable adaptability to new initial and boundary conditions, allowing for rapid fine-tuning and inference.
arXiv Detail & Related papers (2024-03-19T14:30:56Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
We present novel adaptations for convolutional neural networks to process functions as inputs and outputs.
The resulting architecture is termed as convolutional neural operators (CNOs)
We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy.
arXiv Detail & Related papers (2023-02-02T15:54:45Z) - Solving Coupled Differential Equation Groups Using PINO-CDE [42.363646159367946]
PINO-CDE is a deep learning framework for solving coupled differential equation groups (CDEs)
Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs.
This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.
arXiv Detail & Related papers (2022-10-01T08:39:24Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.