論文の概要: NeRF: Neural Radiance Field in 3D Vision: A Comprehensive Review (Updated Post-Gaussian Splatting)
- arxiv url: http://arxiv.org/abs/2210.00379v7
- Date: Sun, 10 Aug 2025 19:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:55:55.286285
- Title: NeRF: Neural Radiance Field in 3D Vision: A Comprehensive Review (Updated Post-Gaussian Splatting)
- Title(参考訳): NeRF:3Dビジョンにおけるニューラル・ラジアンス・フィールド: 総合的レビュー(ガウス後スプラッティング)
- Authors: Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu, Jonathan Li,
- Abstract要約: 2020年3月、Neural Radiance Field(NeRF)はコンピュータビジョンに革命を起こし、暗黙のニューラルネットワークベースのシーン表現と新しいビュー合成を可能にした。
NeRFモデルは、ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実など、さまざまな応用を見出している。
我々は過去5年間(2020-2025年)のNeRF論文の包括的調査を行う。
- 参考スコア(独自算出の注目度): 18.566848685721084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In March 2020, Neural Radiance Field (NeRF) revolutionized Computer Vision, allowing for implicit, neural network-based scene representation and novel view synthesis. NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. In August 2023, Gaussian Splatting, a direct competitor to the NeRF-based framework, was proposed, gaining tremendous momentum and overtaking NeRF-based research in terms of interest as the dominant framework for novel view synthesis. We present a comprehensive survey of NeRF papers from the past five years (2020-2025). These include papers from the pre-Gaussian Splatting era, where NeRF dominated the field for novel view synthesis and 3D implicit and hybrid representation neural field learning. We also include works from the post-Gaussian Splatting era where NeRF and implicit/hybrid neural fields found more niche applications. Our survey is organized into architecture and application-based taxonomies in the pre-Gaussian Splatting era, as well as a categorization of active research areas for NeRF, neural field, and implicit/hybrid neural representation methods. We provide an introduction to the theory of NeRF and its training via differentiable volume rendering. We also present a benchmark comparison of the performance and speed of classical NeRF, implicit and hybrid neural representation, and neural field models, and an overview of key datasets.
- Abstract(参考訳): 2020年3月、Neural Radiance Field(NeRF)はコンピュータビジョンに革命を起こし、暗黙のニューラルネットワークベースのシーン表現と新しいビュー合成を可能にした。
NeRFモデルは、ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実など、さまざまな応用を見出している。
2023年8月、NeRFベースのフレームワークと直接競合するガウススプラッティング(英語版)が提案され、新たな視点合成の主流となるフレームワークとして、NeRFベースの研究を追い越した。
我々は,過去5年間(2020-2025年)のNeRF論文を包括的に調査した。
その中には、NeRFが新しいビュー合成の分野を支配したガウス以前のスティング時代の論文や、3Dの暗黙的およびハイブリッドな表現ニューラルフィールド学習が含まれる。
我々はまた、NeRFと暗黙的/ハイブリッドなニューラルネットワークがよりニッチな応用を見いだした、ガウス以降のスプラッティング時代の作品も含んでいる。
我々の調査は、ガウス以前のスティング時代の建築と応用に基づく分類、および、NeRF、ニューラルフィールド、暗黙的/ハイブリド神経表現法のための活発な研究領域の分類に分類されている。
我々は、NeRFの理論と、微分可能なボリュームレンダリングによるトレーニングについて紹介する。
また、従来のNeRFの性能と速度、暗黙的およびハイブリッドなニューラル表現、およびニューラルフィールドモデルを比較し、キーデータセットの概要を示す。
関連論文リスト
- NeRF in Robotics: A Survey [95.11502610414803]
近年の神経暗黙表現の出現は、コンピュータビジョンとロボティクス分野に急進的な革新をもたらした。
NeRFは、単純化された数学的モデル、コンパクトな環境記憶、連続的なシーン表現などの大きな表現上の利点から、この傾向を引き起こしている。
論文 参考訳(メタデータ) (2024-05-02T14:38:18Z) - NeRF-DetS: Enhancing Multi-View 3D Object Detection with Sampling-adaptive Network of Continuous NeRF-based Representation [60.47114985993196]
NeRF-Detは、新しいビュー演算と3D知覚のタスクを統一する。
我々は,新しい3次元知覚ネットワーク構造であるNeRF-DetSを導入する。
NeRF-DetSはScanNetV2データセット上で競合するNeRF-Detより優れている。
論文 参考訳(メタデータ) (2024-04-22T06:59:03Z) - Neural Radiance Field in Autonomous Driving: A Survey [15.843740802262301]
本稿では、自律運転の文脈におけるNeRFの応用に関する包括的調査を行う。
本調査は,知覚,3次元再構成,同時局所化とマッピング(SLAM),シミュレーションなど,NeRFの自律運転(AD)への応用を分類するために構成されている。
論文 参考訳(メタデータ) (2024-04-22T01:36:50Z) - Neural Radiance Field-based Visual Rendering: A Comprehensive Review [0.6047429555885261]
近年、Neural Radiance Fields (NeRF) はコンピュータビジョンとグラフィックスの分野で顕著な進歩を遂げている。
NeRFは学術界で継続的な研究ブームを引き起こしている。
本総説では,過去2年間にNeRFに関する研究文献を詳細に分析した。
論文 参考訳(メタデータ) (2024-03-31T15:18:38Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - 3D Gaussian as a New Era: A Survey [19.47965615118856]
3D Gaussian Splatting (3D-GS) はコンピュータグラフィックスの分野で大きな進歩を遂げている。
ニューラルネットワーク(Neural Radiance Fields、NeRF)のようなニューラルネットワークに依存しない、明示的なシーン表現と新しいビュー合成を提供する。
ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実(VR/拡張現実)など、さまざまな分野の応用を見出している。
論文 参考訳(メタデータ) (2024-02-11T12:33:08Z) - BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields [1.1531932979578041]
NeRF(Neural Radiance Fieldsの略)は、AIアルゴリズムを使用して2D画像から3Dオブジェクトを生成する最近のイノベーションである。
この調査は、最近のNeRFの進歩を概観し、それらのアーキテクチャ設計に従って分類する。
論文 参考訳(メタデータ) (2023-06-05T16:10:21Z) - Towards a Robust Framework for NeRF Evaluation [11.348562090906576]
ニューラルレージアンスフィールド(NeRF)パイプラインからニューラルレンダリングネットワークを分離する新しいテストフレームワークを提案する。
次に, 明示的放射場表現に基づくNeRFの訓練と評価を行い, パラメトリック評価を行う。
我々のアプローチは、NeRF法の比較客観的評価フレームワークを作成する可能性を提供します。
論文 参考訳(メタデータ) (2023-05-29T13:30:26Z) - Neural Radiance Fields (NeRFs): A Review and Some Recent Developments [0.0]
Neural Radiance Field(NeRF)は、完全に接続されたニューラルネットワークの重みの3Dシーンを表すフレームワークである。
ベースフレームワークの性能と能力を拡張する最近の開発によって、NeRFはポピュラーな研究分野になってきた。
論文 参考訳(メタデータ) (2023-04-30T03:23:58Z) - Learning a Diffusion Prior for NeRFs [84.99454404653339]
正規化グリッド上に符号化されたNeRFを生成するために拡散モデルを提案する。
提案モデルでは,現実的なNeRFのサンプル化が可能である一方で,条件付き世代を許容すると同時に,特定の観察をガイダンスとして与えることができることを示す。
論文 参考訳(メタデータ) (2023-04-27T19:24:21Z) - Neural Radiance Fields: Past, Present, and Future [0.0]
MildenhallらがNeRFに関する論文で行った試みは、コンピュータグラフィックス、ロボティクス、コンピュータビジョンのブームにつながり、高解像度の低ストレージ拡張現実と仮想現実ベースの3Dモデルは、NeRFに関連する1000以上のプレプリントのリセットから注目を集めている。
このサーベイは、レンダリング、インプリシトラーニング、NeRFの歴史、NeRFの研究の進展、そして今日の世界のNeRFの潜在的な応用と意味を提供する。
論文 参考訳(メタデータ) (2023-04-20T02:17:08Z) - Nerfstudio: A Modular Framework for Neural Radiance Field Development [60.210943944285184]
NerfstudioはNeural Radiance Fields(NeRF)メソッドを実装するためのモジュール型のPyTorchフレームワークである。
NeRFはコンピュータビジョン、グラフィックス、ロボティクスなどの幅広い応用分野において急速に成長している研究分野である。
我々のフレームワークにはNeRFベースの手法を実装するためのプラグイン・アンド・プレイコンポーネントが含まれており、研究者や実践者が彼らのプロジェクトにNeRFを組み込むのが容易になる。
論文 参考訳(メタデータ) (2023-02-08T18:58:00Z) - StegaNeRF: Embedding Invisible Information within Neural Radiance Fields [61.653702733061785]
我々は、NeRFレンダリングにステガノグラフィー情報を埋め込む方法であるStegaNeRFを提案する。
我々は、NeRFで描画された画像から正確な隠れ情報抽出を可能にする最適化フレームワークを設計する。
StegaNeRFは、NeRFレンダリングにカスタマイズ可能で、認識不能で、回復不能な情報を注入する新しい問題に対する最初の調査である。
論文 参考訳(メタデータ) (2022-12-03T12:14:19Z) - NeRF-RPN: A general framework for object detection in NeRFs [54.54613914831599]
NeRF-RPNは、シーン内のオブジェクトのすべてのバウンディングボックスを検出することを目的としている。
NeRF-RPNは一般的なフレームワークであり、クラスラベルなしでオブジェクトを検出できる。
論文 参考訳(メタデータ) (2022-11-21T17:02:01Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
我々は,NeRFトレーニングの正規化にロバストなデータ拡張のパワーを初めてもたらすAugmented NeRF(Aug-NeRF)を提案する。
提案手法では,最悪の場合の摂動を3段階のNeRFパイプラインにシームレスにブレンドする。
Aug-NeRFは、新しいビュー合成と基礎となる幾何再構成の両方において、NeRF性能を効果的に向上させる。
論文 参考訳(メタデータ) (2022-07-04T02:27:07Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z) - NeuSample: Neural Sample Field for Efficient View Synthesis [129.10351459066501]
本稿では,ニューラルサンプル場を命名する軽量モジュールを提案する。
提案したサンプルフィールドは、線をサンプル分布にマッピングし、点座標に変換し、ボリュームレンダリングのために放射場に供給することができる。
我々はNeuSampleが高速な推論速度を保ちながら、NeRFよりも優れたレンダリング品質を実現することを示す。
論文 参考訳(メタデータ) (2021-11-30T16:43:49Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
不完全なカメラポーズからNeRFを訓練するためのバンドル調整ニューラルラジアンスフィールド(BARF)を提案します。
BARFは、ニューラルネットワークシーンの表現を効果的に最適化し、大きなカメラのポーズミスを同時に解決する。
これにより、未知のカメラポーズからの映像シーケンスのビュー合成とローカライズが可能になり、視覚ローカライズシステムのための新しい道を開くことができる。
論文 参考訳(メタデータ) (2021-04-13T17:59:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。