論文の概要: 3D Gaussian as a New Era: A Survey
- arxiv url: http://arxiv.org/abs/2402.07181v2
- Date: Wed, 10 Jul 2024 02:48:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:49:49.279459
- Title: 3D Gaussian as a New Era: A Survey
- Title(参考訳): 3Dガウス、新たな時代へ-調査
- Authors: Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, Ying He,
- Abstract要約: 3D Gaussian Splatting (3D-GS) はコンピュータグラフィックスの分野で大きな進歩を遂げている。
ニューラルネットワーク(Neural Radiance Fields、NeRF)のようなニューラルネットワークに依存しない、明示的なシーン表現と新しいビュー合成を提供する。
ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実(VR/拡張現実)など、さまざまな分野の応用を見出している。
- 参考スコア(独自算出の注目度): 19.47965615118856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF). This technique has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few. Given the growing popularity and expanding research in 3D Gaussian Splatting, this paper presents a comprehensive survey of relevant papers from the past year. We organize the survey into taxonomies based on characteristics and applications, providing an introduction to the theoretical underpinnings of 3D Gaussian Splatting. Our goal through this survey is to acquaint new researchers with 3D Gaussian Splatting, serve as a valuable reference for seminal works in the field, and inspire future research directions, as discussed in our concluding section.
- Abstract(参考訳): 3D Gaussian Splatting (3D-GS)は、ニューラルネットワーク(Neural Radiance Fields, NeRF)のようなニューラルネットワークに依存することなく、明示的なシーン表現と新しいビュー合成を提供するコンピュータグラフィックスの分野で大きな進歩を遂げている。
この技術は、ロボティクス、都市マッピング、自律ナビゲーション、仮想現実/拡張現実などの分野に多様な応用を見出した。
本稿では,3Dガウススプラッティングにおける普及と研究の進展を踏まえ,過去1年間の関連論文を包括的に調査する。
本調査は,3次元ガウススプラッティングの理論的基盤となる特徴と応用に基づいて分類学に整理した。
本調査の目的は,3次元ガウシアン・スプラッティング(3D Gaussian Splatting)の研究者を知っており,この分野における基礎研究の貴重な参考として機能し,今後の研究の方向性を示唆することである。
関連論文リスト
- Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
多視点表面再構成における符号付き距離関数(SDF)の推測は不可欠である。
本稿では3DGSとニューラルSDFの学習をシームレスに融合する手法を提案する。
我々の数値的および視覚的比較は、広く使用されているベンチマークの最先端結果よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-10-18T05:48:06Z) - 3D Representation Methods: A Survey [0.0]
3D表現は、様々なアプリケーションにおける高忠実度3Dモデルの需要の増加によって、大きな進歩を遂げてきた。
本稿では,3次元表現法の開発と現状を概観し,研究の軌跡,革新,強度,弱さを概観する。
論文 参考訳(メタデータ) (2024-10-09T02:01:05Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3Dのセマンティック占有予測は,周囲のシーンの3Dの微細な形状とセマンティックスを得ることを目的としている。
本稿では,3Dシーンを3Dセマンティック・ガウシアンで表現するオブジェクト中心表現を提案する。
GaussianFormerは17.8%から24.8%のメモリ消費しか持たない最先端のメソッドで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-27T17:59:51Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3次元ガウススプラッティングは、新規なビュー合成のレンダリング速度を大幅に高速化した。
3D Gaussian Splattingの明示的な表現は、動的再構成、幾何学的編集、物理シミュレーションなどの編集作業を容易にする。
本稿では,3次元再構成,3次元編集,その他の下流アプリケーションに大まかに分類できる最近の3次元ガウス散乱法について,文献的考察を行う。
論文 参考訳(メタデータ) (2024-03-17T07:57:08Z) - Advances in 3D Generation: A Survey [54.95024616672868]
3Dコンテンツ生成の分野は急速に発展しており、高品質で多様な3Dモデルの作成を可能にしている。
具体的には,3次元生成のバックボーンとして機能する3D表現を紹介する。
本稿では,アルゴリズムのパラダイムのタイプによって分類された,生成手法に関する急成長する文献の概要について概説する。
論文 参考訳(メタデータ) (2024-01-31T13:06:48Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) は、明示的なラディアンス場とコンピュータグラフィックスの領域において、トランスフォーメーション技術として登場した。
本稿では,3D GSの領域における最近の発展と重要な貢献について,初めて体系的に概説する。
前例のないレンダリング速度を実現することで、3D GSは、仮想現実からインタラクティブメディアなど、数多くのアプリケーションを開くことができる。
論文 参考訳(メタデータ) (2024-01-08T13:42:59Z) - Neural Radiance Fields: Past, Present, and Future [0.0]
MildenhallらがNeRFに関する論文で行った試みは、コンピュータグラフィックス、ロボティクス、コンピュータビジョンのブームにつながり、高解像度の低ストレージ拡張現実と仮想現実ベースの3Dモデルは、NeRFに関連する1000以上のプレプリントのリセットから注目を集めている。
このサーベイは、レンダリング、インプリシトラーニング、NeRFの歴史、NeRFの研究の進展、そして今日の世界のNeRFの潜在的な応用と意味を提供する。
論文 参考訳(メタデータ) (2023-04-20T02:17:08Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。