論文の概要: Strength-Adaptive Adversarial Training
- arxiv url: http://arxiv.org/abs/2210.01288v1
- Date: Tue, 4 Oct 2022 00:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 15:25:34.670798
- Title: Strength-Adaptive Adversarial Training
- Title(参考訳): 強度適応型対向訓練
- Authors: Chaojian Yu, Dawei Zhou, Li Shen, Jun Yu, Bo Han, Mingming Gong,
Nannan Wang, Tongliang Liu
- Abstract要約: 対戦訓練(AT)は、敵データに対するネットワークの堅牢性を確実に改善することが証明されている。
所定の摂動予算を持つ現在のATは、堅牢なネットワークの学習に制限がある。
本稿では,これらの制限を克服するために,emphStrength-Adaptive Adversarial Training (SAAT)を提案する。
- 参考スコア(独自算出の注目度): 103.28849734224235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training (AT) is proved to reliably improve network's robustness
against adversarial data. However, current AT with a pre-specified perturbation
budget has limitations in learning a robust network. Firstly, applying a
pre-specified perturbation budget on networks of various model capacities will
yield divergent degree of robustness disparity between natural and robust
accuracies, which deviates from robust network's desideratum. Secondly, the
attack strength of adversarial training data constrained by the pre-specified
perturbation budget fails to upgrade as the growth of network robustness, which
leads to robust overfitting and further degrades the adversarial robustness. To
overcome these limitations, we propose \emph{Strength-Adaptive Adversarial
Training} (SAAT). Specifically, the adversary employs an adversarial loss
constraint to generate adversarial training data. Under this constraint, the
perturbation budget will be adaptively adjusted according to the training state
of adversarial data, which can effectively avoid robust overfitting. Besides,
SAAT explicitly constrains the attack strength of training data through the
adversarial loss, which manipulates model capacity scheduling during training,
and thereby can flexibly control the degree of robustness disparity and adjust
the tradeoff between natural accuracy and robustness. Extensive experiments
show that our proposal boosts the robustness of adversarial training.
- Abstract(参考訳): adversarial training (at)は、adversarial dataに対するネットワークの堅牢性を確実に改善することが証明されている。
しかし、事前に特定された摂動予算を持つ現在のATは、堅牢なネットワークの学習に制限がある。
第一に、様々なモデル容量のネットワークに所定の摂動予算を適用すると、自然と頑健な精度の相違が生じ、ネットワークの不安定さから逸脱する。
第2に、予め定められた摂動予算によって制約された敵訓練データの攻撃強度は、ネットワークロバスト性の成長に伴ってアップグレードできず、強固な過剰フィッティングにつながり、さらに敵のロバスト性が低下する。
これらの制約を克服するため,我々は,emph{Strength-Adaptive Adversarial Training} (SAAT)を提案する。
具体的には、敵の損失制約を用いて敵の訓練データを生成する。
この制約の下では、摂動予算は敵データのトレーニング状態に応じて適応的に調整され、堅牢なオーバーフィッティングを効果的に回避できる。
さらに、SAATは、トレーニング中のモデルキャパシティスケジューリングを制御する対向損失により、トレーニングデータの攻撃強度を明示的に制限し、これにより、頑健性の相違度を柔軟に制御し、自然な精度と堅牢性のトレードオフを調整することができる。
本提案は, 対人訓練の堅牢性を高めるものである。
関連論文リスト
- Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Improved Adversarial Training Through Adaptive Instance-wise Loss
Smoothing [5.1024659285813785]
敵の訓練は、このような敵の攻撃に対する最も成功した防御であった。
本稿では,新たな対人訓練手法を提案する。
本手法は,$ell_infty$-norm制約攻撃に対する最先端のロバスト性を実現する。
論文 参考訳(メタデータ) (2023-03-24T15:41:40Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-21T22:01:36Z) - Enhancing Adversarial Robustness for Deep Metric Learning [77.75152218980605]
深層学習モデルの対角的堅牢性を改善する必要がある。
過度にハードな例によるモデル崩壊を避けるため、既存の守備隊はmin-max対逆訓練を中止した。
本研究では, 対人訓練において, 一定の硬度までトレーニング三重奏を効率よく摂動させる硬度操作を提案する。
論文 参考訳(メタデータ) (2022-03-02T22:27:44Z) - Can Adversarial Training Be Manipulated By Non-Robust Features? [64.73107315313251]
もともとテストタイムの敵の例に抵抗するために設計された対人訓練は、トレーニング時間アベイラビリティーアタックの緩和に有望であることが示されている。
我々は、トレーニングデータをわずかに摂動させることで、堅牢な可用性を阻害することを目的とした、安定性攻撃と呼ばれる新しい脅威モデルを特定する。
この脅威の下では、従来の防衛予算$epsilon$による敵の訓練が、単純な統計的条件下でテストロバスト性を提供するのに確実に失敗することを発見した。
論文 参考訳(メタデータ) (2022-01-31T16:25:25Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
対人訓練は、敵の堅牢性を改善するための主要な方法であり、対人攻撃に対する第一線である。
本稿では,ネットワーク全体から,あるクラスに対応する決定境界に近い領域の重要部分に焦点を移す,対向ロバスト性の問題に対する新たな視点を提供する。
MNISTとCIFAR-10データセットの実験的結果は、この手法がトレーニングデータから非常に小さなデータセットを使用しても、敵の堅牢性を大幅に向上することを示している。
論文 参考訳(メタデータ) (2020-08-18T10:23:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。