論文の概要: Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning
- arxiv url: http://arxiv.org/abs/2404.06230v1
- Date: Tue, 9 Apr 2024 11:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 14:50:19.025294
- Title: Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning
- Title(参考訳): 攻撃的・非受容的・両方:フェデレート学習におけるハイブリッドビザンチンのネットワーク操作
- Authors: Emre Ozfatura, Kerem Ozfatura, Alptekin Kupcu, Deniz Gunduz,
- Abstract要約: フェデレートラーニング(FL)は、多種多様なクライアント(おそらくモバイルデバイス)が、一般化された機械学習モデルの生成に協力できるようにするために導入された。
多数のクライアントが参加しているため、各クライアントのプロファイルと検証が難しい場合が多いため、セキュリティ上の脅威が発生します。
本研究では,より高感度のNN位置のみを攻撃し,さらに時間とともに蓄積するハイブリッド・スパルス・ビザンチン攻撃を導入する。
- 参考スコア(独自算出の注目度): 6.384138583754105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has been introduced to enable a large number of clients, possibly mobile devices, to collaborate on generating a generalized machine learning model thanks to utilizing a larger number of local samples without sharing to offer certain privacy to collaborating clients. However, due to the participation of a large number of clients, it is often difficult to profile and verify each client, which leads to a security threat that malicious participants may hamper the accuracy of the trained model by conveying poisoned models during the training. Hence, the aggregation framework at the parameter server also needs to minimize the detrimental effects of these malicious clients. A plethora of attack and defence strategies have been analyzed in the literature. However, often the Byzantine problem is analyzed solely from the outlier detection perspective, being oblivious to the topology of neural networks (NNs). In the scope of this work, we argue that by extracting certain side information specific to the NN topology, one can design stronger attacks. Hence, inspired by the sparse neural networks, we introduce a hybrid sparse Byzantine attack that is composed of two parts: one exhibiting a sparse nature and attacking only certain NN locations with higher sensitivity, and the other being more silent but accumulating over time, where each ideally targets a different type of defence mechanism, and together they form a strong but imperceptible attack. Finally, we show through extensive simulations that the proposed hybrid Byzantine attack is effective against 8 different defence methods.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、多数のクライアント(おそらくモバイルデバイス)が、多くのローカルサンプルを共有せずに利用し、特定のプライバシをクライアントに提供することによって、一般化された機械学習モデルの生成に協力できるようにするために導入された。
しかし、多数のクライアントが参加しているため、各クライアントのプロファイルや検証が難しい場合が多いため、悪意のある参加者がトレーニング中に有毒なモデルを伝達することで、トレーニングモデルの精度を損なう恐れがある。
したがって、パラメータサーバのアグリゲーションフレームワークは、これらの悪意のあるクライアントの有害な影響を最小限に抑える必要がある。
文献では数多くの攻撃・防衛戦略が分析されている。
しかしながら、しばしばビザンチン問題は、ニューラルネットワーク(NN)のトポロジに不利な外乱検出の観点からのみ分析される。
本研究の範囲内では、NNトポロジに特有の特定の側面情報を抽出することにより、より強力な攻撃を設計できると主張している。
したがって、スパルスニューラルネットワークにインスパイアされたハイブリッド・スパルス・ビザンチン攻撃は、2つの部分から構成される: 1つはスパースな性質を示し、より感度の高い特定のNNロケーションのみを攻撃し、もう1つはよりサイレントで、時間とともに蓄積する。
最後に,提案したハイブリッド・ビザンチン攻撃が8種類の防御方法に対して有効であることを示す。
関連論文リスト
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
本研究では,攻撃者がモデルのエッジ部分のみにアクセスした場合に,ユニバーサルな敵攻撃を発生させる可能性について検討する。
提案手法は, エッジ側の重要な特徴を活用することで, 未知のクラウド部分において, 効果的な誤予測を誘導できることを示唆する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
論文 参考訳(メタデータ) (2024-11-15T11:06:24Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - A Robust Adversary Detection-Deactivation Method for Metaverse-oriented
Collaborative Deep Learning [13.131323206843733]
本稿では,潜在的な悪意のある参加者のアクセスを制限し,隔離する逆検出・不活性化手法を提案する。
また,Multiview CDLのケースで詳細な保護分析を行い,その手法を用いて,有害アクセスを効果的に防止できることを示した。
論文 参考訳(メタデータ) (2023-10-21T06:45:18Z) - Invariant Aggregator for Defending against Federated Backdoor Attacks [28.416262423174796]
フェデレートラーニングは、プライベートデータを直接共有することなく、複数のクライアントで高ユーティリティモデルをトレーニングすることを可能にする。
欠点として、フェデレートされた設定は、悪意のあるクライアントの存在下での様々な敵攻撃に対して、モデルを脆弱にする。
本稿では、集約された更新を一般的に有用である不変方向へリダイレクトする不変アグリゲータを提案する。
論文 参考訳(メタデータ) (2022-10-04T18:06:29Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
対人訓練は、敵の堅牢性を改善するための主要な方法であり、対人攻撃に対する第一線である。
本稿では,ネットワーク全体から,あるクラスに対応する決定境界に近い領域の重要部分に焦点を移す,対向ロバスト性の問題に対する新たな視点を提供する。
MNISTとCIFAR-10データセットの実験的結果は、この手法がトレーニングデータから非常に小さなデータセットを使用しても、敵の堅牢性を大幅に向上することを示している。
論文 参考訳(メタデータ) (2020-08-18T10:23:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。