Cloud removal Using Atmosphere Model
- URL: http://arxiv.org/abs/2210.01981v1
- Date: Wed, 5 Oct 2022 01:29:19 GMT
- Title: Cloud removal Using Atmosphere Model
- Authors: Yi Guo, Feng Li and Zhuo Wang
- Abstract summary: Cloud removal is an essential task in remote sensing data analysis.
We propose to use scattering model for temporal sequence of images of any scene in the framework of low rank and sparse models.
We develop a semi-realistic simulation method to produce cloud cover so that various methods can be quantitatively analysed.
- Score: 7.259230333873744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud removal is an essential task in remote sensing data analysis. As the
image sensors are distant from the earth ground, it is likely that part of the
area of interests is covered by cloud. Moreover, the atmosphere in between
creates a constant haze layer upon the acquired images. To recover the ground
image, we propose to use scattering model for temporal sequence of images of
any scene in the framework of low rank and sparse models. We further develop
its variant, which is much faster and yet more accurate. To measure the
performance of different methods {\em objectively}, we develop a semi-realistic
simulation method to produce cloud cover so that various methods can be
quantitatively analysed, which enables detailed study of many aspects of cloud
removal algorithms, including verifying the effectiveness of proposed models in
comparison with the state-of-the-arts, including deep learning models, and
addressing the long standing problem of the determination of regularisation
parameters. The latter is companioned with theoretic analysis on the range of
the sparsity regularisation parameter and verified numerically.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
This paper presents a novel framework called DiffCR, which leverages conditional guided diffusion with deep convolutional networks for high-performance cloud removal for optical satellite imagery.
We introduce a decoupled encoder for conditional image feature extraction, providing a robust color representation to ensure the close similarity of appearance information between the conditional input and the synthesized output.
arXiv Detail & Related papers (2023-08-08T17:34:28Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
We introduce ScatterNeRF, a neural rendering method which renders scenes and decomposes the fog-free background.
We propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses.
We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.
arXiv Detail & Related papers (2023-05-03T13:24:06Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
We introduce UnCRtainTS, a method for multi-temporal cloud removal combining a novel attention-based architecture.
We show how the well-calibrated predicted uncertainties enable a precise control of the reconstruction quality.
arXiv Detail & Related papers (2023-04-11T19:27:18Z) - Non-Homogeneous Haze Removal via Artificial Scene Prior and
Bidimensional Graph Reasoning [52.07698484363237]
We propose a Non-Homogeneous Haze Removal Network (NHRN) via artificial scene prior and bidimensional graph reasoning.
Our method achieves superior performance over many state-of-the-art algorithms for both the single image dehazing and hazy image understanding tasks.
arXiv Detail & Related papers (2021-04-05T13:04:44Z) - Predicting Landsat Reflectance with Deep Generative Fusion [2.867517731896504]
Public satellite missions are commonly bound to a trade-off between spatial and temporal resolution.
This hinders their potential to assist vegetation monitoring or humanitarian actions.
We probe the potential of deep generative models to produce high-resolution optical imagery by fusing products with different spatial and temporal characteristics.
arXiv Detail & Related papers (2020-11-09T21:06:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.