Blockchain-based Monitoring for Poison Attack Detection in Decentralized
Federated Learning
- URL: http://arxiv.org/abs/2210.02873v1
- Date: Fri, 30 Sep 2022 19:07:29 GMT
- Title: Blockchain-based Monitoring for Poison Attack Detection in Decentralized
Federated Learning
- Authors: Ranwa Al Mallah, David Lopez
- Abstract summary: Federated Learning (FL) is a machine learning technique that addresses the privacy challenges in terms of access rights of local datasets.
In decentralized FL, the chief is eliminated from the learning process as workers collaborate between each other to train the global model.
We propose a technique which consists in decoupling the monitoring phase from the detection phase in defenses against poisoning attacks.
- Score: 2.322461721824713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a machine learning technique that addresses the
privacy challenges in terms of access rights of local datasets by enabling the
training of a model across nodes holding their data samples locally. To achieve
decentralized federated learning, blockchain-based FL was proposed as a
distributed FL architecture. In decentralized FL, the chief is eliminated from
the learning process as workers collaborate between each other to train the
global model. Decentralized FL applications need to account for the additional
delay incurred by blockchain-based FL deployments. Particularly in this
setting, to detect targeted/untargeted poisoning attacks, we investigate the
end-to-end learning completion latency of a realistic decentralized FL process
protected against poisoning attacks. We propose a technique which consists in
decoupling the monitoring phase from the detection phase in defenses against
poisoning attacks in a decentralized federated learning deployment that aim at
monitoring the behavior of the workers. We demonstrate that our proposed
blockchain-based monitoring improved network scalability, robustness and time
efficiency. The parallelization of operations results in minimized latency over
the end-to-end communication, computation, and consensus delays incurred during
the FL and blockchain operations.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - B^2SFL: A Bi-level Blockchained Architecture for Secure Federated
Learning-based Traffic Prediction [4.3030251749726345]
Federated Learning (FL) is a privacy-preserving machine learning technology.
Security and privacy guarantees could be compromised due to malicious participants and the centralized FL server.
This article proposed a bi-level blockchained architecture for secure federated learning-based traffic prediction.
arXiv Detail & Related papers (2023-10-23T08:06:05Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
Federated learning (FL) is expected to enable true real-time applications in production environments.
The empowerment of FL through blockchain (also referred to as FLchain) has some implications in terms of ledger inconsistencies and age of information (AoI)
In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance.
arXiv Detail & Related papers (2022-05-20T14:20:47Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.