論文の概要: Trustworthy clinical AI solutions: a unified review of uncertainty
quantification in deep learning models for medical image analysis
- arxiv url: http://arxiv.org/abs/2210.03736v1
- Date: Wed, 5 Oct 2022 07:01:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 15:54:03.603994
- Title: Trustworthy clinical AI solutions: a unified review of uncertainty
quantification in deep learning models for medical image analysis
- Title(参考訳): 信頼できる臨床AIソリューション:医療画像解析のためのディープラーニングモデルにおける不確実性定量化の統一的レビュー
- Authors: Benjamin Lambert, Florence Forbes, Alan Tucholka, Senan Doyle,
Harmonie Dehaene and Michel Dojat
- Abstract要約: 本稿では,ディープラーニング予測に関連する不確実性を定量化するための既存手法の概要を提案する。
本稿では,画像の高次元性とその品質変動性から,医用画像解析への応用に焦点をあてる。
- 参考スコア(独自算出の注目度): 1.0439136407307046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The full acceptance of Deep Learning (DL) models in the clinical field is
rather low with respect to the quantity of high-performing solutions reported
in the literature. Particularly, end users are reluctant to rely on the rough
predictions of DL models. Uncertainty quantification methods have been proposed
in the literature as a potential response to reduce the rough decision provided
by the DL black box and thus increase the interpretability and the
acceptability of the result by the final user. In this review, we propose an
overview of the existing methods to quantify uncertainty associated to DL
predictions. We focus on applications to medical image analysis, which present
specific challenges due to the high dimensionality of images and their quality
variability, as well as constraints associated to real-life clinical routine.
We then discuss the evaluation protocols to validate the relevance of
uncertainty estimates. Finally, we highlight the open challenges of uncertainty
quantification in the medical field.
- Abstract(参考訳): 臨床分野におけるDeep Learning(DL)モデルの完全受け入れは,文献で報告されたハイパフォーマンスなソリューションの量に対して比較的低い。
特に、エンドユーザーはDLモデルの大雑把な予測に頼ることに消極的です。
dlブラックボックスの粗い決定を低減し、最終ユーザによる結果の解釈可能性と受容性を高める潜在的応答として、不確実性定量化手法が文献に提案されている。
本稿では,DL予測に関連する不確実性を定量化する既存手法の概要について述べる。
本研究は,画像の高次元性とその品質変動性,および実生活における臨床経過に伴う制約など,特定の課題を呈する医用画像解析への応用に焦点を当てる。
次に,不確実性評価の妥当性を検証するための評価プロトコルについて検討する。
最後に,医療分野における不確実性定量化の課題を明らかにする。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - A review of uncertainty quantification in medical image analysis:
probabilistic and non-probabilistic methods [11.972374203751562]
機械学習モデルの信頼性を定量化するための潜在的な解決策として、不確実性定量化法が提案されている。
本総説は,医療画像解析機械学習モデルにおける不確実性定量化の研究について,臨床および技術的な背景から,迅速かつ詳細な理解を得ることを目的としている。
論文 参考訳(メタデータ) (2023-10-09T10:15:48Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
モデル予測に関連する不確実性の定量化は 重要な臨床応用に不可欠です
自動臓器分割のためのディープラーニングに基づく手法は,診断と治療計画を支援する上で有望であることを示す。
医用画像解析設定においてどの方法が好ましいかは不明確である。
論文 参考訳(メタデータ) (2023-08-15T00:09:33Z) - A Review of Uncertainty Estimation and its Application in Medical
Imaging [32.860577735207094]
不確実性推定は、深部モデルの予測とともに信頼性評価を生成する上で重要な役割を果たす。
これは特に医療画像において重要であり、モデルの予測の不確実性は、関心領域の特定や、臨床医への追加情報の提供に利用することができる。
論文 参考訳(メタデータ) (2023-02-16T06:54:33Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Can uncertainty boost the reliability of AI-based diagnostic methods in
digital pathology? [3.8424737607413157]
デジタル病理学におけるDL予測の不確実性予測を付加すると,臨床応用の価値が増大する可能性が示唆された。
モデル統合手法(MCドロップアウトとディープアンサンブル)の有効性をモデル非依存アプローチと比較した。
以上の結果から,不確実性推定はある程度の信頼性を高め,分類しきい値選択に対する感度を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-17T10:10:00Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。