論文の概要: ProGReST: Prototypical Graph Regression Soft Trees for Molecular
Property Prediction
- arxiv url: http://arxiv.org/abs/2210.03745v1
- Date: Fri, 7 Oct 2022 10:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:51:54.460733
- Title: ProGReST: Prototypical Graph Regression Soft Trees for Molecular
Property Prediction
- Title(参考訳): ProGReST:分子特性予測のための原型グラフ回帰ソフトツリー
- Authors: Dawid Rymarczyk, Daniel Dobrowolski, Tomasz Danel
- Abstract要約: ProGreST(Prototypeal Graph Regression Self-Explainable Trees)モデルは、プロトタイプ学習、ソフト決定木、グラフニューラルネットワークを組み合わせたモデルである。
ProGReSTでは、モデルに組み込まれた解釈可能性による予測とともに、理論的に得られる。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose the novel Prototypical Graph Regression
Self-explainable Trees (ProGReST) model, which combines prototype learning,
soft decision trees, and Graph Neural Networks. In contrast to other works, our
model can be used to address various challenging tasks, including compound
property prediction. In ProGReST, the rationale is obtained along with
prediction due to the model's built-in interpretability. Additionally, we
introduce a new graph prototype projection to accelerate model training.
Finally, we evaluate PRoGReST on a wide range of chemical datasets for
molecular property prediction and perform in-depth analysis with chemical
experts to evaluate obtained interpretations. Our method achieves competitive
results against state-of-the-art methods.
- Abstract(参考訳): 本研究では, プロトタイプ学習, ソフト決定木, グラフニューラルネットワークを組み合わせた, プロトタイプ型グラフ回帰自己説明木(ProGreST)モデルを提案する。
他の研究とは対照的に、我々のモデルは複合特性予測を含む様々な課題に対処するために利用できる。
ProGReSTでは、モデルに組み込まれた解釈可能性による予測とともに、理論的に得られる。
さらに,モデルトレーニングを加速するために,新しいグラフプロトタイププロジェクションを導入する。
最後に,分子特性予測のための幅広い化学データセット上でのプログレストを評価し,得られた解釈を評価するために化学専門家と詳細な分析を行う。
本手法は最先端手法と競合する結果を得る。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Global Concept Explanations for Graphs by Contrastive Learning [0.6906005491572401]
本稿では,グラフニューラルネットワークの予測からグローバルな概念記述を抽出する手法を提案する。
合成および実世界のグラフ特性予測タスクに関する計算実験を行う。
論文 参考訳(メタデータ) (2024-04-25T11:43:46Z) - Interpretable Prototype-based Graph Information Bottleneck [22.25047783463307]
本稿では,PGIB(Interpretable Prototype-based Graph Information Bottleneck)と呼ばれる,説明可能なグラフニューラルネットワーク(GNN)の新たなフレームワークを提案する。
PGIBは、情報ボトルネックフレームワークにプロトタイプ学習を組み込んで、モデル予測に重要な入力グラフから重要な部分グラフをプロトタイプに提供する。
定性的分析を含む広範囲な実験により、PGIBは予測性能と説明可能性の両方の観点から最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-10-30T18:16:19Z) - Enhancing Model Learning and Interpretation Using Multiple Molecular
Graph Representations for Compound Property and Activity Prediction [0.0]
本研究では,高次情報を含む複数の分子グラフ表現を導入する。
モデル学習と多様な視点からの解釈に対するそれらの効果について研究する。
その結果, 原子グラフ表現と分子グラフ表現の低減を組み合わせれば, 有望なモデル性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-04-13T04:20:30Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
有機化学反応をモデル化するために,グラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
論文 参考訳(メタデータ) (2020-07-08T17:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。