FBNet: Feedback Network for Point Cloud Completion
- URL: http://arxiv.org/abs/2210.03974v1
- Date: Sat, 8 Oct 2022 09:12:37 GMT
- Title: FBNet: Feedback Network for Point Cloud Completion
- Authors: Xuejun Yan, Hongyu Yan, Jingjing Wang, Hang Du, Zhihong Wu, Di Xie,
Shiliang Pu, Li Lu
- Abstract summary: We propose a novel Feedback Network (FBNet) for point cloud completion, in which present features are efficiently refined by rerouting subsequent fine-grained ones.
The main challenge of building feedback connections is the mismatching between present and subsequent features.
To address this, the elaborately designed point Cross Transformer exploits efficient information from feedback features via cross attention strategy.
- Score: 35.89264923599902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of point cloud learning has driven point cloud
completion into a new era. However, the information flows of most existing
completion methods are solely feedforward, and high-level information is rarely
reused to improve low-level feature learning. To this end, we propose a novel
Feedback Network (FBNet) for point cloud completion, in which present features
are efficiently refined by rerouting subsequent fine-grained ones. Firstly,
partial inputs are fed to a Hierarchical Graph-based Network (HGNet) to
generate coarse shapes. Then, we cascade several Feedback-Aware Completion
(FBAC) Blocks and unfold them across time recurrently. Feedback connections
between two adjacent time steps exploit fine-grained features to improve
present shape generations. The main challenge of building feedback connections
is the dimension mismatching between present and subsequent features. To
address this, the elaborately designed point Cross Transformer exploits
efficient information from feedback features via cross attention strategy and
then refines present features with the enhanced feedback features. Quantitative
and qualitative experiments on several datasets demonstrate the superiority of
proposed FBNet compared to state-of-the-art methods on point completion task.
Related papers
- Iterative Feedback Network for Unsupervised Point Cloud Registration [17.41663459141476]
We propose a novel Iterative Feedback Network (IFNet) for unsupervised point cloud registration.
Our IFNet is built upon a series of Feedback Registration Block (FRB) modules, with each module responsible for generating the feedforward rigid transformation and feedback high-level features.
Our experiments on various benchmark datasets demonstrate the superior registration performance of our IFNet.
arXiv Detail & Related papers (2024-01-09T04:44:12Z) - DualGenerator: Information Interaction-based Generative Network for
Point Cloud Completion [25.194587599472147]
Point cloud completion estimates complete shapes from incomplete point clouds to obtain higher-quality point cloud data.
Most existing methods only consider global object features, ignoring spatial and semantic information of adjacent points.
We propose an information interaction-based generative network for point cloud completion.
arXiv Detail & Related papers (2023-05-16T03:25:38Z) - SeedFormer: Patch Seeds based Point Cloud Completion with Upsample
Transformer [46.800630776714016]
We propose a novel SeedFormer to improve the ability of detail preservation and recovery in point cloud completion.
We introduce a new shape representation, namely Patch Seeds, which not only captures general structures from partial inputs but also preserves regional information of local patterns.
Our method outperforms state-of-the-art completion networks on several benchmark datasets.
arXiv Detail & Related papers (2022-07-21T06:15:59Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
arXiv Detail & Related papers (2021-08-23T05:10:29Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.