Quantum information masking of an arbitrary qudit can be realized in
multipartite lower dimensional systems
- URL: http://arxiv.org/abs/2210.03978v1
- Date: Sat, 8 Oct 2022 09:21:08 GMT
- Title: Quantum information masking of an arbitrary qudit can be realized in
multipartite lower dimensional systems
- Authors: Wei-Min Shang, Xing-Yan Fan, Fu-Lin Zhang, and Jing-Ling Chen
- Abstract summary: Quantum information masking is a protocol that hides the original quantum information from subsystems and spreads it over quantum correlation.
Our scheme well demonstrates the abundance of quantum correlation between multipartite quantum system and has potential application in the security of quantum information processing.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum information masking is a protocol that hides the original quantum
information from subsystems and spreads it over quantum correlation, which is
available to multipartite except bipartite systems. In this work, we explicitly
study the quantum information masking in multipartite scenario and prove that
all the k-level quantum states can be masked into a m-qudit systems (m > 4)
whose local dimension d < k and the upper bound of k is tighter than the
quantum Singleton bound. In order to observe the masking process intuitively,
explicitly controlled operations are provided. Our scheme well demonstrates the
abundance of quantum correlation between multipartite quantum system and has
potential application in the security of quantum information processing.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - State Transfer and Entanglement between Two- and Four-Level Atoms in A
Cavity [0.4724825031148412]
We propose a scheme to transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity.
With the qubit-qudit interaction, our scheme can transfer quantum states efficiently and measurement-independently.
arXiv Detail & Related papers (2023-02-22T03:16:54Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum Information Masking in Non-Hermitian Systems and Robustness [0.0]
We show that quantum states can be deterministically masked, while an arbitrary set of quantum states cannot be masked in non-Hermitian quantum systems.
We study robustness of quantum information masking against noisy environments.
arXiv Detail & Related papers (2022-03-08T06:03:36Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Fisher information from randomized measurements [0.0]
The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas.
We use measurements of the density matrix to construct lower bounds that converge to the QFI.
We present two examples of applications of the method in quantum systems made of coupled qubits and collective spins.
arXiv Detail & Related papers (2021-05-27T14:16:14Z) - Quantum information masking basing on quantum teleportation [0.0]
No-masking theorem says that masking quantum information is impossible in a bipartite scenario.
We present two four-partite maskers and a tripartite masker.
The information can be extracted naturally in their reverse processes.
arXiv Detail & Related papers (2021-03-04T15:53:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Photonic implementation of quantum information masking [16.34212056758587]
Masking of quantum information spreads it over nonlocal correlations and hides it from the subsystems.
We show that the resource of maskable quantum states are far more abundant than the no-go theorem seemingly suggests.
We devise a photonic quantum information masking machine to experimentally investigate the properties of qubit masking.
arXiv Detail & Related papers (2020-11-10T08:01:26Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.