論文の概要: Don't Waste Data: Transfer Learning to Leverage All Data for
Machine-Learnt Climate Model Emulation
- arxiv url: http://arxiv.org/abs/2210.04001v1
- Date: Sat, 8 Oct 2022 11:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:35:46.060275
- Title: Don't Waste Data: Transfer Learning to Leverage All Data for
Machine-Learnt Climate Model Emulation
- Title(参考訳): データを浪費するな - 機械学習型気候モデルエミュレーションのための全データを活用するトランスファー学習
- Authors: Raghul Parthipan and Damon J. Wischik
- Abstract要約: 我々は、すべての高解像度データを活用するために、転送学習アプローチを使用します。
トレーニングを安定化し、一般化性能を向上し、その結果予測スキルが向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can we learn from all available data when training machine-learnt climate
models, without incurring any extra cost at simulation time? Typically, the
training data comprises coarse-grained high-resolution data. But only keeping
this coarse-grained data means the rest of the high-resolution data is thrown
out. We use a transfer learning approach, which can be applied to a range of
machine learning models, to leverage all the high-resolution data. We use three
chaotic systems to show it stabilises training, gives improved generalisation
performance and results in better forecasting skill. Our anonymised code is at
https://www.dropbox.com/sh/0o1pks1i90mix3q/AAAMGfyD7EyOkdnA_Hp5ZpiWa?dl=0
- Abstract(参考訳): シミュレーション時に余分なコストを伴わずに、機械学習による気候モデルのトレーニングで利用可能なすべてのデータから学ぶには、どうすればよいのか?
通常、トレーニングデータは粗い粒度の高解像度データを含む。
しかし、この粗いデータだけを保持すると、残りの高解像度データは捨てられる。
我々は、さまざまな機械学習モデルに適用可能な転送学習アプローチを使用して、すべての高解像度データを活用する。
3つのカオスシステムを用いてスタビリシートレーニングを行い,一般化性能の向上と予測能力の向上を実現した。
匿名のコードはhttps://www.dropbox.com/sh/0o1pks1i90mix3q/AAAMGfyD7EyOkdnA_Hp5ZpiWa?
dl=0
関連論文リスト
- How to unlearn a learned Machine Learning model ? [0.0]
機械学習モデルを学習し、その能力を視覚化するためのエレガントなアルゴリズムを提示します。
基礎となる数学的理論を解明し、所望のデータに対する未学習モデルの性能と望ましくないデータに対する無知の両方を評価するための具体的な指標を確立する。
論文 参考訳(メタデータ) (2024-10-13T17:38:09Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD)は高速で、訓練データの長期保存を必要としない。
高速で性能が高く,トレーニングデータの長期保存を必要としない,新しい2段階のポストホック,リトレーニングフリーなマシンアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T11:30:45Z) - Machine Learning Force Fields with Data Cost Aware Training [94.78998399180519]
分子動力学(MD)シミュレーションを加速するために機械学習力場(MLFF)が提案されている。
最もデータ効率のよいMLFFであっても、化学精度に達するには数百フレームの力とエネルギーのラベルが必要になる。
我々は、安価な不正確なデータと高価な正確なデータの組み合わせを利用して、MLFFのデータコストを下げる多段階計算フレームワークASTEROIDを提案する。
論文 参考訳(メタデータ) (2023-06-05T04:34:54Z) - Deep Regression Unlearning [6.884272840652062]
我々は、プライバシー攻撃に対して堅牢な、一般化された深層回帰学習手法を導入する。
我々は、コンピュータビジョン、自然言語処理、予測アプリケーションのための回帰学習実験を行う。
論文 参考訳(メタデータ) (2022-10-15T05:00:20Z) - Machine Unlearning Method Based On Projection Residual [23.24026891609028]
本稿ではニュートン法に基づく投射残差法を採用する。
主な目的は、線形回帰モデルとニューラルネットワークモデルという文脈で機械学習タスクを実装することである。
実験により, この手法は, モデル再学習に近いデータ削除において, より徹底的な手法であることが確認された。
論文 参考訳(メタデータ) (2022-09-30T07:29:55Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
遅延変数を用いた圧縮による非パラメトリック学習(NPC-LV)を提案する。
NPC-LVは、ラベルなしデータが多いがラベル付きデータはほとんどないデータセットの学習フレームワークである。
我々は,NPC-LVが低データ構造における画像分類における3つのデータセットの教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-23T09:35:03Z) - Kubric: A scalable dataset generator [73.78485189435729]
KubricはPythonフレームワークで、PyBulletやBlenderとインターフェースして写真リアリスティックなシーンを生成する。
本研究では,3次元NeRFモデルの研究から光フロー推定まで,13種類の異なるデータセットを提示することで,Kubricの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-07T18:13:59Z) - Zero-Shot Machine Unlearning [6.884272840652062]
現代のプライバシー規制は、市民に製品、サービス、企業によって忘れられる権利を与える。
トレーニングプロセスやトレーニングサンプルに関連するデータは、未学習の目的のためにアクセスできない。
本稿では, (a) 誤り最小化雑音と (b) ゲート付き知識伝達に基づくゼロショットマシンアンラーニングのための2つの新しい解を提案する。
論文 参考訳(メタデータ) (2022-01-14T19:16:09Z) - Data Collection and Quality Challenges in Deep Learning: A Data-Centric
AI Perspective [16.480530590466472]
データ中心のAIプラクティスが主流になりつつある。
現実世界の多くのデータセットは小さく、汚く、偏りがあり、毒まみれである。
データ品質については、データ検証とデータクリーニング技術について研究する。
論文 参考訳(メタデータ) (2021-12-13T03:57:36Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。