論文の概要: Fine-grained Anomaly Detection in Sequential Data via Counterfactual
Explanations
- arxiv url: http://arxiv.org/abs/2210.04145v1
- Date: Sun, 9 Oct 2022 02:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:30:57.960112
- Title: Fine-grained Anomaly Detection in Sequential Data via Counterfactual
Explanations
- Title(参考訳): 擬似説明による時系列データのきめ細かい異常検出
- Authors: He Cheng, Depeng Xu, Shuhan Yuan, Xintao Wu
- Abstract要約: 本稿では, CFDetと呼ばれる, きめ細かい入力検出のための新しいフレームワークを提案する。
異常として検出されるシーケンスを考慮すれば、異常なエントリ検出を解釈可能な機械学習タスクとみなすことができる。
本稿では, 深層支援ベクトルデータ記述法(Deep SVDD)を用いて異常なシーケンスを検出する。
- 参考スコア(独自算出の注目度): 19.836395281552626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in sequential data has been studied for a long time because
of its potential in various applications, such as detecting abnormal system
behaviors from log data. Although many approaches can achieve good performance
on anomalous sequence detection, how to identify the anomalous entries in
sequences is still challenging due to a lack of information at the entry-level.
In this work, we propose a novel framework called CFDet for fine-grained
anomalous entry detection. CFDet leverages the idea of interpretable machine
learning. Given a sequence that is detected as anomalous, we can consider
anomalous entry detection as an interpretable machine learning task because
identifying anomalous entries in the sequence is to provide an interpretation
to the detection result. We make use of the deep support vector data
description (Deep SVDD) approach to detect anomalous sequences and propose a
novel counterfactual interpretation-based approach to identify anomalous
entries in the sequences. Experimental results on three datasets show that
CFDet can correctly detect anomalous entries.
- Abstract(参考訳): ログデータから異常なシステム挙動を検出するなど、様々な応用の可能性から、シーケンシャルデータにおける異常検出が長い間研究されてきた。
多くの手法が異常シーケンス検出において優れた性能を発揮するが、エントリレベルでの情報不足のため、シーケンス内の異常エントリの特定方法はまだ難しい。
本研究では, CFDetと呼ばれる, きめ細かい入力検出のためのフレームワークを提案する。
CFDetは解釈可能な機械学習の概念を活用する。
異常が検出されたシーケンスが与えられた場合、異常なエントリを識別することは検出結果の解釈を提供するため、異常なエントリ検出を解釈可能な機械学習タスクと考えることができる。
我々は,deep support vector data description (deep svdd) 法を用いて異常シーケンスの検出を行い,その異常エントリを識別するための新しい反事実解釈に基づく手法を提案する。
3つのデータセットの実験結果は、CFDetが異常なエントリを正しく検出できることを示している。
関連論文リスト
- Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection [49.91075101563298]
イベントプロンプトから疑わしい異常の学習を導くための新しい枠組みが提案されている。
これにより、新しいマルチプロンプト学習プロセスにより、すべてのビデオの視覚的セマンティックな特徴を制限できる。
提案手法はAPやAUCといった最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-02T10:42:47Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Series2Graph: Graph-based Subsequence Anomaly Detection for Time Series [22.630676187747696]
長いシーケンスにおける後続異常検出は、幅広い領域の応用において重要な問題である。
本研究では,ドメイン列異常検出に適した教師なし手法を提案する。
本手法は,サブシーケンスの低次元非依存性埋め込みのグラフ表現に基づく。
論文 参考訳(メタデータ) (2022-07-25T13:55:43Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
本稿では,一組のシーケンスからユーティリティを意識した外部規則の発見を可能にする,DUOSと呼ばれる新しい異常検出フレームワークを提案する。
本研究では,集団の異常性と実用性を両立させ,ユーティリティ・アウェア・アウトリー・ルール(UOSR)の概念を導入する。
論文 参考訳(メタデータ) (2021-11-29T23:52:31Z) - A Taxonomy of Anomalies in Log Data [0.09558392439655014]
異常の一般的な分類法は、すでに存在するが、ログデータに特に適用されていない。
本稿では,異なる種類のログデータ異常に対する分類法を提案し,ラベル付きデータセットにおけるそのような異常を分析する方法を提案する。
以上の結果から,最も一般的な異常型が予測し易いことが示唆された。
論文 参考訳(メタデータ) (2021-11-26T12:23:06Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z) - Sequential Adversarial Anomaly Detection for One-Class Event Data [18.577418448786634]
本稿では,異常なシーケンスのみを利用できる場合の1クラス設定における逐次異常検出問題について考察する。
生成器から最悪のケース列に対して最適な検出器を見つけるために,ミニマックス問題を解くことで,逆数列検出器を提案する。
論文 参考訳(メタデータ) (2019-10-21T06:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。