論文の概要: Universal Adversarial Perturbations: Efficiency on a small image dataset
- arxiv url: http://arxiv.org/abs/2210.04591v1
- Date: Mon, 10 Oct 2022 11:51:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:05:16.682485
- Title: Universal Adversarial Perturbations: Efficiency on a small image dataset
- Title(参考訳): Universal Adversarial Perturbations:小さな画像データセットの効率性
- Authors: Waris Radji (ENSEIRB-MATMECA, UB)
- Abstract要約: 論文では、任意の画像に付加された場合、非常に高い確率でニューラルネットワークを騙すユニバーサル・アドバイサル摂動の存在が示されている。
本稿では,Universal Adversarial Perturbationsの論文を,より小さなニューラルネットワークアーキテクチャとトレーニングセットで再現しようと試みる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although neural networks perform very well on the image classification task,
they are still vulnerable to adversarial perturbations that can fool a neural
network without visibly changing an input image. A paper has shown the
existence of Universal Adversarial Perturbations which when added to any image
will fool the neural network with a very high probability. In this paper we
will try to reproduce the experience of the Universal Adversarial Perturbations
paper, but on a smaller neural network architecture and training set, in order
to be able to study the efficiency of the computed perturbation.
- Abstract(参考訳): ニューラルネットワークは画像分類タスクで非常によく機能するが、入力イメージを視覚的に変更することなくニューラルネットワークを騙す敵の摂動に弱い。
論文では、任意の画像に付加された場合、非常に高い確率でニューラルネットワークを騙すユニバーサル・アドバイサル摂動の存在が示されている。
本稿では,計算された摂動の効率を研究できるように,より小さなニューラルネットワークアーキテクチャとトレーニングセット上で,普遍的摂動論文の経験を再現する。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Learning Low-Rank Feature for Thorax Disease Classification [7.447448767095787]
本稿では胸部疾患分類について検討する。
疾患領域の特徴の効果的な抽出は, 放射線画像上の疾患分類に不可欠である。
本稿では,Low-Rank Feature Learning (LRFL)法を提案する。
論文 参考訳(メタデータ) (2024-02-14T15:35:56Z) - On The Relationship Between Universal Adversarial Attacks And Sparse
Representations [38.43938212884298]
敵攻撃とスパース表現の関連性を示す。
ニューラルネットワークに対する一般的な攻撃は、入力画像のスパース表現に対する攻撃として表現することができる。
論文 参考訳(メタデータ) (2023-11-14T16:00:29Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Towards robust vision by multi-task learning on monkey visual cortex [6.9014416935919565]
我々は,深部ネットワークを併用して画像分類を行い,マカク一次視覚野(V1)の神経活動を予測する訓練を行った。
その結果,モンキーV1データによるコトレーニングは,トレーニング中に歪みがないにもかかわらず,ロバスト性の向上につながることがわかった。
また、ネットワークの堅牢性が向上するにつれて、ネットワークの表現がより脳に似たものになることを示した。
論文 参考訳(メタデータ) (2021-07-29T21:55:48Z) - Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation [30.644905857223474]
本稿では,医療画像セグメンテーションのためのラベル付きデータと大量のラベル付き画像を用いて,ニューラルネットワークを訓練するための半教師付きアプローチを提案する。
未ラベル画像に対する新たな擬似ラベル(いわゆる自己ループ不確実性)を基盤として、トレーニングセットを増強し、セグメンテーション精度を高める。
論文 参考訳(メタデータ) (2020-07-20T02:52:07Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
訓練されていない畳み込みニューラルネットワークは、画像の回復と復元に非常に成功したツールとして登場した。
トレーニングされていない畳み込みニューラルネットワークは、ほぼ最小限のランダムな測定値から、十分に構造化された信号や画像を概ね再構成可能であることを示す。
論文 参考訳(メタデータ) (2020-05-07T15:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。