論文の概要: A CNN Based Approach for the Point-Light Photometric Stereo Problem
- arxiv url: http://arxiv.org/abs/2210.04655v1
- Date: Mon, 10 Oct 2022 12:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:04:27.590746
- Title: A CNN Based Approach for the Point-Light Photometric Stereo Problem
- Title(参考訳): 点光測光ステレオ問題に対するCNNに基づくアプローチ
- Authors: Fotios Logothetis, Roberto Mecca, Ignas Budvytis, Roberto Cipolla
- Abstract要約: 本稿では、遠距離場光度ステレオにおける深部ニューラルネットワークの最近の改良を活用して、現実的な仮定を処理できるCNNベースのアプローチを提案する。
われわれのアプローチは、DiLiGenT実世界のデータセットの最先端よりも優れている。
近距離点光源PSデータに対する我々のアプローチの性能を測定するため、LUCESを「近距離点光のための最初の実世界のデータセット」として紹介する。
- 参考スコア(独自算出の注目度): 26.958763133729846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing the 3D shape of an object using several images under different
light sources is a very challenging task, especially when realistic assumptions
such as light propagation and attenuation, perspective viewing geometry and
specular light reflection are considered. Many of works tackling Photometric
Stereo (PS) problems often relax most of the aforementioned assumptions.
Especially they ignore specular reflection and global illumination effects. In
this work, we propose a CNN-based approach capable of handling these realistic
assumptions by leveraging recent improvements of deep neural networks for
far-field Photometric Stereo and adapt them to the point light setup. We
achieve this by employing an iterative procedure of point-light PS for shape
estimation which has two main steps. Firstly we train a per-pixel CNN to
predict surface normals from reflectance samples. Secondly, we compute the
depth by integrating the normal field in order to iteratively estimate light
directions and attenuation which is used to compensate the input images to
compute reflectance samples for the next iteration.
Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT
real world dataset. Furthermore, in order to measure the performance of our
approach for near-field point-light source PS data, we introduce LUCES the
first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo'
of 14 objects of different materials were the effects of point light sources
and perspective viewing are a lot more significant. Our approach also
outperforms the competition on this dataset as well. Data and test code are
available at the project page.
- Abstract(参考訳): 異なる光源下で複数の画像を用いて物体の3次元形状を再構成することは、特に光伝播や減衰、遠近視幾何学、鏡面反射といった現実的な仮定を考える場合、非常に難しい課題である。
光度ステレオ(PS)問題に取り組む多くの研究は、上記の仮定の多くを緩和する。
特に鏡面反射や全球照明効果を無視する。
本研究では,遠方場測光ステレオのためのディープニューラルネットワークの最近の改良を活用して,これらの現実的な仮定を処理可能なcnnベースの手法を提案する。
2つの主要なステップを持つ形状推定のために、点光PSの反復的な手順を用いてこれを実現する。
まず、ピクセル単位のcnnを訓練し、反射率サンプルから表面の正常値を予測する。
第2に、光方向を反復的に推定するために正規場を統合することで深度を計算し、入力画像の補正と次の反復に対する反射率サンプルの計算を行う。
われわれのアプローチは、DiLiGenT実世界のデータセットの最先端を著しく上回る。
さらに、近距離点光源psデータに対する我々のアプローチの性能を測定するために、異なる材料の14の物体の「近距離点光源フォトメトリックステレオのためのデータセット」をルーツに紹介する。
当社のアプローチは,このデータセットの競合も優れています。
データとテストコードはプロジェクトのページで入手できる。
関連論文リスト
- Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar [8.464054039931245]
ライダーは、ターゲットに光のパルスを放出し、反射光の光速遅延を記録することで、3Dシーンの幾何学を捉えている。
従来のライダーシステムは、後方散乱光の生で捕獲された波形を出力しない。
我々は,光子ノイズに対するロバスト性を向上させる新しい正則化戦略を開発し,画素あたり10光子程度で正確な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-08-22T08:12:09Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
LUCESは, 様々な素材の14個のオブジェクトからなる, 近距離Ld点光のための最初の実世界のデータセットである。
52個のLEDを計る装置は、カメラから10から30cm離れた位置にある各物体に点灯するように設計されている。
提案するデータセットにおける最新の近接場測光ステレオアルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-04-27T12:30:42Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - GMLight: Lighting Estimation via Geometric Distribution Approximation [86.95367898017358]
本稿では,効率的な照明推定のための回帰ネットワークと生成プロジェクタを用いた照明推定フレームワークを提案する。
幾何学的な光の分布、光強度、周囲条件、および補助深さの点から照明シーンをパラメータ化し、純粋な回帰タスクとして推定します。
推定照明パラメータを用いて、生成プロジェクタはパノラマ照明マップを現実的な外観と周波数で合成する。
論文 参考訳(メタデータ) (2021-02-20T03:31:52Z) - A CNN Based Approach for the Near-Field Photometric Stereo Problem [26.958763133729846]
我々は、フォトメトリックステレオにおける現実的な仮定を処理できる最初のCNNベースのアプローチを提案する。
我々は、遠距離場光度ステレオに対するディープニューラルネットワークの最近の改良を活用し、ニアフィールド設定に適応する。
本手法は, 合成実験と実実験の両方において, 最先端の近距離場光度ステレオ法より優れる。
論文 参考訳(メタデータ) (2020-09-12T13:28:28Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
本稿では,単一のLDR単分子球状パノラマからHDR照明環境マップを推定するデータ駆動モデルを提案する。
データジェネレータと監視機構として画像ベースのリライティングを活用するために,表面形状の可用性を活用する。
論文 参考訳(メタデータ) (2020-05-16T14:23:05Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。