Enhanced spin-mechanical interaction with levitated micromagnets
- URL: http://arxiv.org/abs/2210.04751v2
- Date: Wed, 12 Oct 2022 05:16:22 GMT
- Title: Enhanced spin-mechanical interaction with levitated micromagnets
- Authors: Xue-Feng Pan, Xin-Lei Hei, Xing-Liang Dong, Jia-Qiang Chen, Cai-Peng
Shen, Hamad Ali, and Peng-Bo Li
- Abstract summary: We propose a protocol that can significantly enhance the spin-mechanical coupling strength with a diamond spin vacancy and a levitated micromagnet.
A high fidelity Schrodinger cat state and an unconventional 2-qubit geometric phase gate with high fidelity and faster gate speed can be achieved using this hybrid system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-mechanical hybrid systems have been widely used in quantum information
processing. However, the spin-mechanical interaction is generally weak, making
it a critical challenge to enhance the spin-mechanical interaction into the
strong coupling or even ultra-strong coupling regime. Here, we propose a
protocol that can significantly enhance the spin-mechanical coupling strength
with a diamond spin vacancy and a levitated micromagnet. A driving electrical
current is used to modulate the mechanical motion of the levitated micromagnet,
which induces a two-phonon drive and can exponentially enhance the spin-phonon
and phonon-medicated spin-spin coupling strengths. Furthermore, a high fidelity
Schrodinger cat state and an unconventional 2-qubit geometric phase gate with
high fidelity and faster gate speed can be achieved using this hybrid system.
This protocol provides a promising platform for quantum information processing
with NV spins coupled to levitated micromagnets.
Related papers
- Coupling a single spin to high-frequency motion [0.025360731184360698]
High-frequency mechanical resonators open a range of possibilities when coupled to single spins.
New mechanism gives rise to this coupling, which stems from spin-orbit coupling.
Results propel spin-mechanical platforms to an uncharted regime.
arXiv Detail & Related papers (2024-02-29T15:52:53Z) - Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth [43.06643088952006]
electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
arXiv Detail & Related papers (2023-12-14T14:17:35Z) - Programmable Quantum Processors based on Spin Qubits with
Mechanically-Mediated Interactions and Transport [0.0]
We describe a method for programmable control of multi-qubit spin systems.
We show coherent manipulation and mechanical transport of a proximal spin qubit by utilizing nuclear spin memory.
With realistic improvements the high-cooperativity regime can be reached, offering a new avenue towards scalable quantum information processing with spin qubits.
arXiv Detail & Related papers (2023-07-23T00:52:19Z) - Quantum parametric amplifiation of phonon-mediated magnon-spin
interaction [12.464802118191724]
We show how to strongly couple the magnon modes in a hybrid tripartite system.
The coherent magnon-phonon coupling is engineered by introducing the quantum parametric amplifiation of the mechanical motion.
Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.
arXiv Detail & Related papers (2023-07-22T02:33:28Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Enhancing the spin-photon coupling with a micromagnet [2.2397480009705952]
Hybrid quantum systems involving solid-state spins and superconducting microwave cavities play a crucial role in quantum science and technology.
We propose a technique to strongly couple a single solid-state spin to the microwave photons in a superconducting coplanar waveguide cavity via a magnetic microsphere.
arXiv Detail & Related papers (2021-01-26T07:25:34Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.