Multi-step Planning for Automated Hyperparameter Optimization with
OptFormer
- URL: http://arxiv.org/abs/2210.04971v1
- Date: Mon, 10 Oct 2022 19:07:59 GMT
- Title: Multi-step Planning for Automated Hyperparameter Optimization with
OptFormer
- Authors: Lucio M. Dery, Abram L. Friesen, Nando De Freitas, Marc'Aurelio
Ranzato, Yutian Chen
- Abstract summary: We build on the recently proposed OptFormer model to make planning via rollouts simple and efficient.
We conduct extensive exploration of different strategies for performing multi-step planning on top of the OptFormer model to highlight its potential for use in constructing non-myopic HPO strategies.
- Score: 29.358188163138173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning permeates more industries and models become more
expensive and time consuming to train, the need for efficient automated
hyperparameter optimization (HPO) has never been more pressing. Multi-step
planning based approaches to hyperparameter optimization promise improved
efficiency over myopic alternatives by more effectively balancing out
exploration and exploitation. However, the potential of these approaches has
not been fully realized due to their technical complexity and computational
intensity. In this work, we leverage recent advances in Transformer-based,
natural-language-interfaced hyperparameter optimization to circumvent these
barriers. We build on top of the recently proposed OptFormer which casts both
hyperparameter suggestion and target function approximation as autoregressive
generation thus making planning via rollouts simple and efficient. We conduct
extensive exploration of different strategies for performing multi-step
planning on top of the OptFormer model to highlight its potential for use in
constructing non-myopic HPO strategies.
Related papers
- Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL)
HPO addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks.
Experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines.
arXiv Detail & Related papers (2024-11-01T04:58:40Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Supervising the Multi-Fidelity Race of Hyperparameter Configurations [22.408069485293666]
We introduce DyHPO, a Bayesian Optimization method that learns to decide which hyperparameter configuration to train further in a race among all feasible configurations.
We demonstrate the significant superiority of DyHPO against state-of-the-art hyperparameter optimization methods through large-scale experiments.
arXiv Detail & Related papers (2022-02-20T10:28:02Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z) - Improving Hyperparameter Optimization by Planning Ahead [3.8673630752805432]
We propose a novel transfer learning approach, defined within the context of model-based reinforcement learning.
We propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy.
Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms show that the proposed method can outperform all baselines.
arXiv Detail & Related papers (2021-10-15T11:46:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Hyperparameter Optimization via Sequential Uniform Designs [4.56877715768796]
This paper reformulates HPO as a computer experiment and proposes a novel sequential uniform design (SeqUD) strategy with three-fold advantages.
The proposed SeqUD strategy outperforms benchmark HPO methods, and it can be therefore a promising and competitive alternative to existing AutoML tools.
arXiv Detail & Related papers (2020-09-08T08:55:02Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
We propose an efficient automatic parameter optimization approach, which is based on the mapping from data to the corresponding hyper- parameters.
We show that the proposed approaches outperform the state-of-the-art apporaches significantly.
arXiv Detail & Related papers (2020-03-03T19:26:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.