Computationally-efficient initialisation of GPs: The generalised
variogram method
- URL: http://arxiv.org/abs/2210.05394v3
- Date: Wed, 26 Apr 2023 16:20:42 GMT
- Title: Computationally-efficient initialisation of GPs: The generalised
variogram method
- Authors: Felipe Tobar and Elsa Cazelles and Taco de Wolff
- Abstract summary: Our strategy can be used as a pretraining stage to find initial conditions for maximum-likelihood (ML) training.
We provide experimental validation in terms of accuracy, consistency with ML and computational complexity for different kernels using synthetic and real-world data.
- Score: 1.0312968200748118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a computationally-efficient strategy to initialise the
hyperparameters of a Gaussian process (GP) avoiding the computation of the
likelihood function. Our strategy can be used as a pretraining stage to find
initial conditions for maximum-likelihood (ML) training, or as a standalone
method to compute hyperparameters values to be plugged in directly into the GP
model. Motivated by the fact that training a GP via ML is equivalent (on
average) to minimising the KL-divergence between the true and learnt model, we
set to explore different metrics/divergences among GPs that are computationally
inexpensive and provide hyperparameter values that are close to those found via
ML. In practice, we identify the GP hyperparameters by projecting the empirical
covariance or (Fourier) power spectrum onto a parametric family, thus proposing
and studying various measures of discrepancy operating on the temporal and
frequency domains. Our contribution extends the variogram method developed by
the geostatistics literature and, accordingly, it is referred to as the
generalised variogram method (GVM). In addition to the theoretical presentation
of GVM, we provide experimental validation in terms of accuracy, consistency
with ML and computational complexity for different kernels using synthetic and
real-world data.
Related papers
- Amortized Variational Inference for Deep Gaussian Processes [0.0]
Deep Gaussian processes (DGPs) are multilayer generalizations of Gaussian processes (GPs)
We introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters.
Our method performs similarly or better than previous approaches at less computational cost.
arXiv Detail & Related papers (2024-09-18T20:23:27Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
Convergence Guarantees and Empirical Benefits [21.353189917487512]
gradient descent (SGD) and its variants have established themselves as the go-to algorithms for machine learning problems.
We take a step forward by proving minibatch SGD converges to a critical point of the full log-likelihood loss function.
Our theoretical guarantees hold provided that the kernel functions exhibit exponential or eigendecay.
arXiv Detail & Related papers (2021-11-19T22:28:47Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
We present a non-parametric class of probabilistic machine learning within discrete choice models (DCMs)
The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs.
The model is tested on two different mode choice applications and compared against different LCCM benchmarks.
arXiv Detail & Related papers (2021-01-28T19:56:42Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.