Aggregating Layers for Deepfake Detection
- URL: http://arxiv.org/abs/2210.05478v1
- Date: Tue, 11 Oct 2022 14:29:47 GMT
- Title: Aggregating Layers for Deepfake Detection
- Authors: Amir Jevnisek, Shai Avidan
- Abstract summary: We consider the case where the network is trained on one Deepfake algorithm, and tested on Deepfakes generated by another algorithm.
Our algorithm aggregates features extracted across all layers of one backbone network to detect a fake.
We evaluate our approach on two domains of interest - Deepfake detection and Synthetic image detection, and find that we achieve SOTA results.
- Score: 20.191456827448736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing popularity of facial manipulation (Deepfakes) and synthetic
face creation raises the need to develop robust forgery detection solutions.
Crucially, most work in this domain assume that the Deepfakes in the test set
come from the same Deepfake algorithms that were used for training the network.
This is not how things work in practice. Instead, we consider the case where
the network is trained on one Deepfake algorithm, and tested on Deepfakes
generated by another algorithm. Typically, supervised techniques follow a
pipeline of visual feature extraction from a deep backbone, followed by a
binary classification head. Instead, our algorithm aggregates features
extracted across all layers of one backbone network to detect a fake. We
evaluate our approach on two domains of interest - Deepfake detection and
Synthetic image detection, and find that we achieve SOTA results.
Related papers
- DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - On Improving Cross-dataset Generalization of Deepfake Detectors [1.0152838128195467]
Facial manipulation by deep fake has caused major security risks and raised severe societal concerns.
We formulate deep fake detection as a hybrid combination of supervised and reinforcement learning (RL) to improve its cross-dataset generalization performance.
We demonstrate the superiority of our method over existing published research in cross-dataset generalization of deep fake detectors, thus obtaining state-of-the-art performance.
arXiv Detail & Related papers (2022-04-08T20:34:53Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
We study the security of state-of-the-art deepfake detection methods in adversarial settings.
We use two large-scale public deepfakes data sources including FaceForensics++ and Facebook Deepfake Detection Challenge.
Our results uncover multiple security limitations of the deepfake detection methods in adversarial settings.
arXiv Detail & Related papers (2021-07-05T14:18:21Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.