論文の概要: Focusing on Context is NICE: Improving Overshadowed Entity
Disambiguation
- arxiv url: http://arxiv.org/abs/2210.06164v1
- Date: Wed, 12 Oct 2022 13:05:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 15:15:39.880159
- Title: Focusing on Context is NICE: Improving Overshadowed Entity
Disambiguation
- Title(参考訳): コンテキストにフォーカスすること:過剰なエンティティの曖昧さを改善する
- Authors: Vera Provatorova, Simone Tedeschi, Svitlana Vakulenko, Roberto
Navigli, Evangelos Kanoulas
- Abstract要約: NICEは、コンテキストを活用するためにエンティティタイプ情報を使用し、周波数ベースの事前のオーバーリライスを避ける。
実験の結果,NICEは,頻繁なエンティティに対して競争力を持ちながら,オーバーシャドードエンティティ上で最高のパフォーマンスを達成できることがわかった。
- 参考スコア(独自算出の注目度): 43.82625203429496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity disambiguation (ED) is the task of mapping an ambiguous entity mention
to the corresponding entry in a structured knowledge base. Previous research
showed that entity overshadowing is a significant challenge for existing ED
models: when presented with an ambiguous entity mention, the models are much
more likely to rank a more frequent yet less contextually relevant entity at
the top. Here, we present NICE, an iterative approach that uses entity type
information to leverage context and avoid over-relying on the frequency-based
prior. Our experiments show that NICE achieves the best performance results on
the overshadowed entities while still performing competitively on the frequent
entities.
- Abstract(参考訳): エンティティ曖昧化(Entity Disambiguation、ED)は、構造化知識ベースにおける対応するエントリに言及する曖昧なエンティティをマッピングするタスクである。
あいまいなエンティティに言及すると、モデルの方がより頻度が高く、文脈的に関連しないエンティティをトップにランク付けする可能性がはるかに高いのです。
ここでは、エンティティ型情報を用いてコンテキストを活用し、周波数ベースの事前の過度な参照を避ける反復的なアプローチであるNICEを提案する。
実験の結果,NICEは,頻繁なエンティティに対して競争力を持ちながら,オーバーシャドードエンティティ上で最高のパフォーマンスを達成できることがわかった。
関連論文リスト
- OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
より詳細なエンティティ記述を持つエンティティを曖昧にするためのエンコーダ・デコーダモデルを提案する。
GERBILベンチマークでは、EntQAと比較して、エンド・ツー・エンドのエンティティリンクが+1.5%改善されている。
論文 参考訳(メタデータ) (2024-04-02T04:27:54Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
従来のエンティティ曖昧化(ED)メソッドは、参照コンテキストと候補エンティティの一致するスコアに基づいて予測を行う、識別パラダイムを採用している。
本稿では,エンティティ予測のコヒーレンス向上を目的とした新しいデザインを備えたEDシステムであるCoherentedを提案する。
我々は、人気EDベンチマークにおいて、平均1.3F1ポイントの改善により、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-11-06T16:40:13Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
文書画像から鍵情報を正確かつ堅牢に抽出する手法を提案する。
我々は、エンティティを意味的ポイントとして明示的にモデル化する。つまり、エンティティの中心点は、異なるエンティティの属性と関係を記述する意味情報によって豊かになる。
提案手法は,従来の最先端モデルと比較して,エンティティラベルとリンクの性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-03-23T08:21:16Z) - NASTyLinker: NIL-Aware Scalable Transformer-based Entity Linker [2.3605348648054463]
我々は,NIL-entityを意識したELアプローチを導入し,既知のエンティティのリンク性能を維持しつつ,対応する参照クラスタを生成する。
NIL-entities に対して EL を評価するために明示的に構築されたデータセットである NILK 上で NASTyLinker の有効性と拡張性を示す。
論文 参考訳(メタデータ) (2023-03-08T08:08:57Z) - GE-Blender: Graph-Based Knowledge Enhancement for Blender [3.8841367260456487]
見えないエンティティは対話生成タスクに大きな影響を与える可能性がある。
我々は、エンティティノードを抽出してグラフを構築し、コンテキストの表現を強化する。
未確認のエンティティがグラフに存在しない問題を適用するために、名前付きエンティティタグ予測タスクを追加します。
論文 参考訳(メタデータ) (2023-01-30T13:00:20Z) - Entity Disambiguation with Entity Definitions [50.01142092276296]
ローカルモデルはEntity Disambiguation (ED)で最近驚くべきパフォーマンスを達成した
それまでの研究は、各候補者のテキスト表現として、ウィキペディアのタイトルのみを使うことに限られていた。
本稿では、この制限に対処し、より表現力のあるテキスト表現がそれを緩和できる範囲について検討する。
提案する6つのベンチマークのうち2つに新たな技術の現状を報告し,未知のパターンに対する一般化能力を強く改善する。
論文 参考訳(メタデータ) (2022-10-11T17:46:28Z) - MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity
Representations [28.28940043641958]
本稿では,エンティティ記述のためのマルチビュー表現を構築し,検索手法による参照に対する最適ビューを近似する,エンティティ検索のための新しいアプローチを提案する。
提案手法は,ZESHELにおける最先端性能を実現し,標準エンティティリンクデータセットの候補の品質を向上させる。
論文 参考訳(メタデータ) (2021-09-13T05:51:45Z) - Entity Linking and Discovery via Arborescence-based Supervised
Clustering [35.93568319872986]
本稿では,言及親和性を完全に活用する新しいトレーニングと推論手法を提案する。
我々は,この手法がエンティティ発見に優雅に拡張されていることを示す。
我々はZero-Shot Entity LinkingデータセットとMedMentionsに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-09-02T23:05:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。