論文の概要: Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
Estimation
- arxiv url: http://arxiv.org/abs/2210.06183v1
- Date: Sat, 8 Oct 2022 16:41:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 16:08:19.230307
- Title: Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
Estimation
- Title(参考訳): 治療効果推定のための不均一特徴空間の伝達学習
- Authors: Ioana Bica, Mihaela van der Schaar
- Abstract要約: 本稿では,不均一な特徴空間を扱うために表現学習を利用するビルディングブロックを紹介する。
本稿では,これらのビルディングブロックを用いて,標準CATE学習者の伝達学習の等価性を回復する方法を示す。
- 参考スコア(独自算出の注目度): 103.55894890759376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider the problem of improving the estimation of conditional average
treatment effects (CATE) for a target domain of interest by leveraging related
information from a source domain with a different feature space. This
heterogeneous transfer learning problem for CATE estimation is ubiquitous in
areas such as healthcare where we may wish to evaluate the effectiveness of a
treatment for a new patient population for which different clinical covariates
and limited data are available. In this paper, we address this problem by
introducing several building blocks that use representation learning to handle
the heterogeneous feature spaces and a flexible multi-task architecture with
shared and private layers to transfer information between potential outcome
functions across domains. Then, we show how these building blocks can be used
to recover transfer learning equivalents of the standard CATE learners. On a
new semi-synthetic data simulation benchmark for heterogeneous transfer
learning we not only demonstrate performance improvements of our heterogeneous
transfer causal effect learners across datasets, but also provide insights into
the differences between these learners from a transfer perspective.
- Abstract(参考訳): 異なる特徴空間を持つソース領域からの関連情報を活用することにより、対象領域に対する条件平均処理効果(CATE)の推定を改善する問題を考察する。
CATE推定のための異種移動学習問題は、臨床共変量と限られたデータが利用可能な新規患者に対する治療の効果を評価したいと願う医療などの分野において、至るところで行われている。
本稿では、異種特徴空間を扱うために表現学習を使用する複数のビルディングブロックと、ドメイン間の潜在的な成果関数間の情報を転送するための共有層とプライベート層を持つ柔軟なマルチタスクアーキテクチャを導入することで、この問題に対処する。
次に,これらのビルディングブロックを用いて,標準CATE学習者の伝達学習等価性を回復する方法を示す。
ヘテロジニアス変換学習のための新しい半合成データシミュレーションベンチマークでは、データセット間の異種変換因果効果学習者の性能改善を実証するだけでなく、転送の観点からこれらの学習者の違いについての洞察を提供する。
関連論文リスト
- Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
本研究では、因果的メッセージパッシングに基づく新しい推定器のクラスを導入し、広範で未知な干渉のある設定に特化して設計する。
我々の推定器は、サンプルの平均値と時間とともに単位結果と処理のばらつきから情報を抽出し、観測データの効率的な利用を可能にする。
論文 参考訳(メタデータ) (2024-11-01T18:00:51Z) - Federated Learning for Estimating Heterogeneous Treatment Effects [7.967701699385625]
ヘテロジニアス処理効果(HTE)を推定するための現在の機械学習アプローチでは、処理毎にかなりの量のデータにアクセスする必要がある。
フェデレートラーニング(Federated Learning)を通じて,組織間におけるHTE推定者の協調学習のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-02-27T17:33:23Z) - Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets [28.59271580918754]
効果的な予後モデルは、医師が正確な診断を行い、パーソナライズされた治療計画を設計するのを助けることができる。
限られたデータ収集、不十分な臨床経験、プライバシと倫理上の懸念は、データの可用性を制限します。
本稿では,ソースとターゲットデータセット間の遷移モデルを構築するドメイン不変表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:32:21Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
実世界の病理分類課題におけるデータとモデルスケーリングとデータセット間の知識伝達の有効性について検討する。
ネガティブトランスファーの可能性の課題を特定し、いくつかの重要なコンポーネントの重要性を強調する。
以上の結果から,小規模で汎用的なモデル(ShallowNetなど)は単一データセット上では良好に動作するが,大規模なモデル(TCNなど)では,大規模かつ多様なデータセットからの転送や学習がより優れていることが示唆された。
論文 参考訳(メタデータ) (2023-09-19T20:09:15Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。