Diffusion Models for Causal Discovery via Topological Ordering
- URL: http://arxiv.org/abs/2210.06201v2
- Date: Mon, 26 Jun 2023 14:42:22 GMT
- Title: Diffusion Models for Causal Discovery via Topological Ordering
- Authors: Pedro Sanchez, Xiao Liu, Alison Q O'Neil, Sotirios A. Tsaftaris
- Abstract summary: emphTopological ordering approaches reduce the optimisation space of causal discovery by searching over a permutation rather than graph space.
For ANMs, the emphHessian of the data log-likelihood can be used for finding leaf nodes in a causal graph, allowing its topological ordering.
We introduce theory for updating the learned Hessian without re-training the neural network, and we show that computing with a subset of samples gives an accurate approximation of the ordering.
- Score: 20.875222263955045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering causal relations from observational data becomes possible with
additional assumptions such as considering the functional relations to be
constrained as nonlinear with additive noise (ANM). Even with strong
assumptions, causal discovery involves an expensive search problem over the
space of directed acyclic graphs (DAGs). \emph{Topological ordering} approaches
reduce the optimisation space of causal discovery by searching over a
permutation rather than graph space. For ANMs, the \emph{Hessian} of the data
log-likelihood can be used for finding leaf nodes in a causal graph, allowing
its topological ordering. However, existing computational methods for obtaining
the Hessian still do not scale as the number of variables and the number of
samples increase. Therefore, inspired by recent innovations in diffusion
probabilistic models (DPMs), we propose \emph{DiffAN}\footnote{Implementation
is available at \url{https://github.com/vios-s/DiffAN} .}, a topological
ordering algorithm that leverages DPMs for learning a Hessian function. We
introduce theory for updating the learned Hessian without re-training the
neural network, and we show that computing with a subset of samples gives an
accurate approximation of the ordering, which allows scaling to datasets with
more samples and variables. We show empirically that our method scales
exceptionally well to datasets with up to $500$ nodes and up to $10^5$ samples
while still performing on par over small datasets with state-of-the-art causal
discovery methods. Implementation is available at
https://github.com/vios-s/DiffAN .
Related papers
- CUTS: Neural Causal Discovery from Irregular Time-Series Data [27.06531262632836]
Causal discovery from time-series data has been a central task in machine learning.
We present CUTS, a neural Granger causal discovery algorithm to jointly impute unobserved data points and build causal graphs.
Our approach constitutes a promising step towards applying causal discovery to real applications with non-ideal observations.
arXiv Detail & Related papers (2023-02-15T04:16:34Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
gradient-based explanation algorithms provide perceptually-aligned explanations.
We show that the more a feature attribution is aligned with the tangent space of the data, the more perceptually-aligned it tends to be.
We suggest that explanation algorithms should actively strive to align their explanations with the data manifold.
arXiv Detail & Related papers (2022-06-15T08:49:24Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Sequential Learning of the Topological Ordering for the Linear
Non-Gaussian Acyclic Model with Parametric Noise [6.866717993664787]
We develop a novel sequential approach to estimate the causal ordering of a DAG.
We provide extensive numerical evidence to demonstrate that our procedure is scalable to cases with possibly thousands of nodes.
arXiv Detail & Related papers (2022-02-03T18:15:48Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.