CUTS: Neural Causal Discovery from Irregular Time-Series Data
- URL: http://arxiv.org/abs/2302.07458v1
- Date: Wed, 15 Feb 2023 04:16:34 GMT
- Title: CUTS: Neural Causal Discovery from Irregular Time-Series Data
- Authors: Yuxiao Cheng, Runzhao Yang, Tingxiong Xiao, Zongren Li, Jinli Suo,
Kunlun He, Qionghai Dai
- Abstract summary: Causal discovery from time-series data has been a central task in machine learning.
We present CUTS, a neural Granger causal discovery algorithm to jointly impute unobserved data points and build causal graphs.
Our approach constitutes a promising step towards applying causal discovery to real applications with non-ideal observations.
- Score: 27.06531262632836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from time-series data has been a central task in machine
learning. Recently, Granger causality inference is gaining momentum due to its
good explainability and high compatibility with emerging deep neural networks.
However, most existing methods assume structured input data and degenerate
greatly when encountering data with randomly missing entries or non-uniform
sampling frequencies, which hampers their applications in real scenarios. To
address this issue, here we present CUTS, a neural Granger causal discovery
algorithm to jointly impute unobserved data points and build causal graphs, via
plugging in two mutually boosting modules in an iterative framework: (i) Latent
data prediction stage: designs a Delayed Supervision Graph Neural Network
(DSGNN) to hallucinate and register unstructured data which might be of high
dimension and with complex distribution; (ii) Causal graph fitting stage:
builds a causal adjacency matrix with imputed data under sparse penalty.
Experiments show that CUTS effectively infers causal graphs from unstructured
time-series data, with significantly superior performance to existing methods.
Our approach constitutes a promising step towards applying causal discovery to
real applications with non-ideal observations.
Related papers
- CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality.
We propose a novel gradient-based causal discovery approach STIC, which focuses on textbfShort-textbfTerm textbfInvariance using textbfConvolutional neural networks.
arXiv Detail & Related papers (2024-08-15T08:43:28Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - CausalTime: Realistically Generated Time-series for Benchmarking of
Causal Discovery [14.092834149864514]
This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data.
The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset.
In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms.
arXiv Detail & Related papers (2023-10-03T02:29:19Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - CUTS+: High-dimensional Causal Discovery from Irregular Time-series [13.84185941100574]
We propose CUTS+, which is built on the Granger-causality-based causal discovery method CUTS.
We show that CUTS+ largely improves the causal discovery performance on high-dimensional data with different types of irregular sampling.
arXiv Detail & Related papers (2023-05-10T04:20:36Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
Causal discovery between collections of time-series data can help diagnose causes of symptoms and hopefully prevent faults before they occur.
We propose a new system comprised of two parts, the first part fills missing data with a Gaussian Process Regression, and the second part leverages an Echo State Network.
We report on their corresponding Matthews Correlation Coefficient(MCC) and Receiver Operating Characteristic curves (ROC) and show that the proposed system outperforms existing algorithms.
arXiv Detail & Related papers (2022-01-09T05:55:47Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.