論文の概要: A Comparative Study on 1.5T-3T MRI Conversion through Deep Neural
Network Models
- arxiv url: http://arxiv.org/abs/2210.06362v1
- Date: Wed, 12 Oct 2022 16:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 13:55:01.190355
- Title: A Comparative Study on 1.5T-3T MRI Conversion through Deep Neural
Network Models
- Title(参考訳): ディープニューラルネットワークモデルによる1.5T-3T MRI変換の比較検討
- Authors: Binhua Liao, Yani Chen, Zhewei Wang, Charles D. Smith, Jundong Liu
- Abstract要約: 1.5T MRIから脳の3TライクなMR画像を生成するための、多くのディープニューラルネットワークモデルの能力について検討する。
本研究は,脳内MRI変換のための複数の深層学習ソリューションを評価するための最初の研究である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we explore the capabilities of a number of deep neural network
models in generating whole-brain 3T-like MR images from clinical 1.5T MRIs. The
models include a fully convolutional network (FCN) method and three
state-of-the-art super-resolution solutions, ESPCN [26], SRGAN [17] and PRSR
[7]. The FCN solution, U-Convert-Net, carries out mapping of 1.5T-to-3T slices
through a U-Net-like architecture, with 3D neighborhood information integrated
through a multi-view ensemble. The pros and cons of the models, as well the
associated evaluation metrics, are measured with experiments and discussed in
depth. To the best of our knowledge, this study is the first work to evaluate
multiple deep learning solutions for whole-brain MRI conversion, as well as the
first attempt to utilize FCN/U-Net-like structure for this purpose.
- Abstract(参考訳): 本稿では,臨床用1.5T MRIから脳内3T様MR画像を生成するためのディープニューラルネットワークモデルについて検討する。
モデルには、完全畳み込みネットワーク(FCN)法と3つの最先端超解、ESPCN [26]、SRGAN [17]、PRSR [7]が含まれる。
FCNソリューションであるU-Convert-Netは、U-Netのようなアーキテクチャを通じて1.5T-to-3Tスライスをマッピングし、マルチビューアンサンブルを通じて3D近傍情報を統合する。
モデルの長所と短所、および関連する評価指標は実験によって測定され、深く議論される。
本研究は,脳内MRI変換のための複数のディープラーニングソリューションを評価する最初の試みであり,この目的のためにFCN/U-Netライクな構造を利用する最初の試みである。
関連論文リスト
- Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques [0.0]
本研究では,確率ATLAS,U-Net,nnU-Net,LinkNetなど,様々なセグメンテーションモデルの比較分析を行う。
以上の結果から,3D nnU-Netモデルが他のモデルよりも優れており,Dice Coefficientスコア(0.937 + 0.012)が最も高い結果を得た。
この結果は、特にN4 Bias Field CorrectionとAnisotropic Diffusion Pre-processingと組み合わせた場合、脳組織セグメンテーションにおけるnnU-Netモデルの優位性を強調した。
論文 参考訳(メタデータ) (2024-11-08T10:07:03Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Generalizable synthetic MRI with physics-informed convolutional networks [57.628770497971246]
物理インフォームド・ディープ・ラーニング(Deep Learning-based)法を開発し,複数の脳磁気共鳴画像(MRI)のコントラストを1つの5分間の取得から合成する。
我々は、任意のコントラストに一般化し、ニューロイメージングプロトコルを加速する能力について検討する。
論文 参考訳(メタデータ) (2023-05-21T21:16:20Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - A Neural Ordinary Differential Equation Model for Visualizing Deep
Neural Network Behaviors in Multi-Parametric MRI based Glioma Segmentation [3.1435638364138105]
我々は,マルチパラメトリックMRI(mp-MRI)に基づくグリオーマセグメンテーションにおいて,ディープニューラルネットワーク(DNN)を可視化するためのニューラル常微分方程式(ODE)モデルを開発した。
すべてのニューラルODEモデルは、イメージダイナミクスを期待どおりに説明できた。
論文 参考訳(メタデータ) (2022-03-01T17:16:41Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - MRI Super-Resolution with GAN and 3D Multi-Level DenseNet: Smaller,
Faster, and Better [16.65044022241517]
高分解能(HR)磁気共鳴画像(MRI)は、臨床応用において診断に重要な詳細な解剖情報を提供する。
HR MRIは通常、長時間のスキャン、空間被覆の小さい、信号対雑音比(SNR)のコストがかかる。
近年の研究では、ディープ畳み込みニューラルネットワーク(CNN)を用いて、単一画像超解像(SISR)アプローチにより、低解像度(LR)入力からHRジェネリックイメージを復元できることが示されている。
論文 参考訳(メタデータ) (2020-03-02T22:07:56Z) - Deep Learning Estimation of Multi-Tissue Constrained Spherical
Deconvolution with Limited Single Shell DW-MRI [2.903217519429591]
深層学習は、第8次制約付き球面デコンボリューション(CSD)によって得られた情報内容を推定するために用いられる。
2つのネットワークアーキテクチャについて検討する: 中央に残留ブロックを持つ完全連結層からなる逐次ネットワーク(ResDNN)と、残ブロックを持つパッチベースの畳み込みニューラルネットワーク(ResCNN)。
繊維配向分布関数 (fODF) はマルチシェルDW-MRIの取得から得られたMT-CSTの基底的真実と比較して高い相関で復元できる。
論文 参考訳(メタデータ) (2020-02-20T15:59:03Z) - Brain segmentation based on multi-atlas guided 3D fully convolutional
network ensembles [1.52292571922932]
構造磁気共鳴画像(MRI)から関心領域(ROI)を抽出するためのマルチアトラスガイド3次元完全畳み込みネットワーク(FCN)アンサンブルモデル(M-FCN)を提案し,検証した。
我々は、各ROIの3次元FCNモデルを、適応サイズのパッチとデコンボリューション層内の畳み込み層の組込み出力を用いて訓練し、局所的およびグローバルなコンテキストパターンをさらに捉えた。
その結果,提案手法はセグメンテーション性能に優れていた。
論文 参考訳(メタデータ) (2019-01-05T08:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。