論文の概要: Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques
- arxiv url: http://arxiv.org/abs/2411.05456v1
- Date: Fri, 08 Nov 2024 10:07:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:03.024143
- Title: Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques
- Title(参考訳): N4バイアス野補正と異方性拡散前処理技術を用いたMRIからの脳組織自動分離のための確率論的アトラス法とディープラーニング法の比較検討
- Authors: Mohammad Imran Hossain, Muhammad Zain Amin, Daniel Tweneboah Anyimadu, Taofik Ahmed Suleiman,
- Abstract要約: 本研究では,確率ATLAS,U-Net,nnU-Net,LinkNetなど,様々なセグメンテーションモデルの比較分析を行う。
以上の結果から,3D nnU-Netモデルが他のモデルよりも優れており,Dice Coefficientスコア(0.937 + 0.012)が最も高い結果を得た。
この結果は、特にN4 Bias Field CorrectionとAnisotropic Diffusion Pre-processingと組み合わせた場合、脳組織セグメンテーションにおけるnnU-Netモデルの優位性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Automatic brain tissue segmentation from Magnetic Resonance Imaging (MRI) images is vital for accurate diagnosis and further analysis in medical imaging. Despite advancements in segmentation techniques, a comprehensive comparison between traditional statistical methods and modern deep learning approaches using pre-processing techniques like N4 Bias Field Correction and Anisotropic Diffusion remains underexplored. This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet, enhanced with these pre-processing techniques to segment brain tissues (white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)) on the Internet Brain Segmentation Repository (IBSR18) dataset. Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 +- 0.012), while the 2D nnU-Net model recorded the lowest mean Hausdorff Distance (5.005 +- 0.343 mm) and the lowest mean Absolute Volumetric Difference (3.695 +- 2.931 mm) across five unseen test samples. The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques. Our implemented code can be accessed via GitHub.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)画像からの自動脳組織分画は、医用画像における正確な診断とさらなる解析に不可欠である。
セグメンテーション技術の進歩にもかかわらず、N4バイアス場補正や異方性拡散といった前処理技術を用いた従来の統計手法と現代のディープラーニング手法の包括的比較は未定である。
本研究は, 確率的ATLAS, U-Net, nnU-Net, LinkNetを含む様々なセグメンテーションモデルの比較分析を行い, これらの前処理技術を用いて, インターネット脳セグメンテーションリポジトリ(IBSR18)データセット上に脳組織(白質(WM), 灰白質(GM), 髄液(CSF)を分割するように拡張した。
その結果,3D nnU-NetモデルではDice Coefficientスコア(0.937+-0.012),2D nnU-NetモデルではHausdorff Distance(5.005+- 4343 mm),最低平均Absolute Volumetric difference(3.695+- 2.931 mm)が測定された。
この結果は、特にN4 Bias Field CorrectionとAnisotropic Diffusion Pre-processingと組み合わせた場合、脳組織セグメンテーションにおけるnnU-Netモデルの優位性を強調した。
実装されたコードはGitHubからアクセスできます。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-01-17T10:39:39Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments:
Neighborhood Relationship Enhanced Fully Convolutional Network [6.597152960878372]
FilterNetは新しい完全畳み込みネットワーク(FCN)であり、個々のふくらはぎの筋肉の区画分割にエッジ対応の制約を埋め込む。
FCNは健常者10名, 疾患者30名のT1強調MRI像を4倍のクロスバリデーションで評価した。
論文 参考訳(メタデータ) (2020-06-21T22:53:58Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。