Subject-specific quantitative susceptibility mapping using patch based
deep image priors
- URL: http://arxiv.org/abs/2210.06471v1
- Date: Mon, 10 Oct 2022 02:28:53 GMT
- Title: Subject-specific quantitative susceptibility mapping using patch based
deep image priors
- Authors: Arvind Balachandrasekaran, Davood Karimi, Camilo Jaimes and Ali
Gholipour
- Abstract summary: We propose a subject-specific, patch-based, unsupervised learning algorithm to estimate the susceptibility map.
We make the problem well-posed by exploiting the redundancies across the patches of the map using a deep convolutional neural network.
We tested the algorithm on a 3D invivo dataset and demonstrated improved reconstructions over competing methods.
- Score: 13.734472448148333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative Susceptibility Mapping is a parametric imaging technique to
estimate the magnetic susceptibilities of biological tissues from MRI phase
measurements. This problem of estimating the susceptibility map is ill posed.
Regularized recovery approaches exploiting signal properties such as smoothness
and sparsity improve reconstructions, but suffer from over-smoothing artifacts.
Deep learning approaches have shown great potential and generate maps with
reduced artifacts. However, for reasonable reconstructions and network
generalization, they require numerous training datasets resulting in increased
data acquisition time. To overcome this issue, we proposed a subject-specific,
patch-based, unsupervised learning algorithm to estimate the susceptibility
map. We make the problem well-posed by exploiting the redundancies across the
patches of the map using a deep convolutional neural network. We formulated the
recovery of the susceptibility map as a regularized optimization problem and
adopted an alternating minimization strategy to solve it. We tested the
algorithm on a 3D invivo dataset and, qualitatively and quantitatively,
demonstrated improved reconstructions over competing methods.
Related papers
- Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
We propose an unsupervised, adaptive coarse-to-fine framework that enhances reconstruction quality without being constrained by the sparsity levels or patterns in under-sampling.
We integrate a novel learning strategy that progressively refines the use of acquired k-space signals for self-supervision.
Our method outperforms current state-of-the-art scan-specific MRI reconstruction techniques, for up to 8-fold under-sampling.
arXiv Detail & Related papers (2023-12-01T16:00:16Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue.
The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain desired tissue parameter maps from acquired raw data.
We propose PINQI, a novel qMRI reconstruction method that integrates the knowledge about the signal, acquisition model, and learned regularization into a single end-to-end trainable neural network.
arXiv Detail & Related papers (2023-06-19T15:37:53Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Stabilizing Deep Tomographic Reconstruction [25.179542326326896]
We propose an Analytic Compressed Iterative Deep (ACID) framework to address this challenge.
ACID synergizes a deep reconstruction network trained on big data, kernel awareness from CS-inspired processing, and iterative refinement.
Our study demonstrates that the deep reconstruction using ACID is accurate and stable, and sheds light on the converging mechanism of the ACID iteration.
arXiv Detail & Related papers (2020-08-04T21:35:32Z) - Joint reconstruction and bias field correction for undersampled MR
imaging [7.409376558513677]
Undersampling the k-space in MRI allows saving precious acquisition time, yet results in an ill-posed inversion problem.
Deep learning schemes are susceptible to differences between the training data and the image to be reconstructed at test time.
In this work, we address the sensitivity of the reconstruction problem to the bias field and propose to model it explicitly in the reconstruction.
arXiv Detail & Related papers (2020-07-26T12:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.