論文の概要: SUMBot: Summarizing Context in Open-Domain Dialogue Systems
- arxiv url: http://arxiv.org/abs/2210.06496v1
- Date: Wed, 12 Oct 2022 18:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 13:54:07.008177
- Title: SUMBot: Summarizing Context in Open-Domain Dialogue Systems
- Title(参考訳): SUMBot: オープンドメイン対話システムにおけるコンテキストの要約
- Authors: Rui Ribeiro, Lu\'isa Coheur
- Abstract要約: 本手法では,文脈の一部を履歴全体ではなく要約で置き換える簡易な手法を提案する。
要約の含意が回答生成タスクを改善する可能性を示し、システムの弱点をさらに理解するためのいくつかの事例について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we investigate the problem of including relevant information
as context in open-domain dialogue systems. Most models struggle to identify
and incorporate important knowledge from dialogues and simply use the entire
turns as context, which increases the size of the input fed to the model with
unnecessary information. Additionally, due to the input size limitation of a
few hundred tokens of large pre-trained models, regions of the history are not
included and informative parts from the dialogue may be omitted. In order to
surpass this problem, we introduce a simple method that substitutes part of the
context with a summary instead of the whole history, which increases the
ability of models to keep track of all the previous relevant information. We
show that the inclusion of a summary may improve the answer generation task and
discuss some examples to further understand the system's weaknesses.
- Abstract(参考訳): 本稿では,オープンドメイン対話システムにおける関連情報をコンテキストとして含む問題について検討する。
ほとんどのモデルは、対話から重要な知識を特定し、組み込むのに苦労し、単にターン全体をコンテキストとして使うだけで、不要な情報でモデルに供給される入力のサイズを増加させます。
また、大型事前学習モデルの数百トークンの入力サイズ制限のため、履歴の領域は含まれず、対話からの情報的な部分を省略することができる。
この問題を克服するために,過去のすべての関連情報を追跡するモデルの能力を高めるため,履歴全体ではなくサマリでコンテキストの一部を代用するシンプルな手法を提案する。
要約文の導入により,回答生成作業が改善される可能性を示し,システムの弱点をさらに理解するための例を考察する。
関連論文リスト
- Long Dialog Summarization: An Analysis [28.223798877781054]
この研究は、様々なアプリケーションにおける効果的なコミュニケーションのために、一貫性と文脈的に豊かな要約を作成することの重要性を強調している。
異なる領域における長いダイアログの要約に対する現在の最先端のアプローチについて検討し、ベンチマークに基づく評価により、異なる要約タスクのために、各領域で1つのモデルがうまく機能しないことを示す。
論文 参考訳(メタデータ) (2024-02-26T19:35:45Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
本稿では,対話要約モデルを訓練するための欠点を補う自己教師型手法を提案する。
我々の原理は,対話文表現の文脈化能力を高めるために,前文対話文を用いて不整合情報の流れを検出することである。
論文 参考訳(メタデータ) (2022-09-01T07:51:46Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - TODSum: Task-Oriented Dialogue Summarization with State Tracking [16.87549093925514]
タスク指向の対話要約データセット TODSum を大規模に導入する。
既存の作業と比較して、TODSumは深刻な分散情報問題に悩まされており、厳密な事実整合性を必要とする。
対話状態情報と対話履歴を統合するための状態認識型対話要約モデルを提案する。
論文 参考訳(メタデータ) (2021-10-25T06:53:11Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - A Simple But Effective Approach to n-shot Task-Oriented Dialogue
Augmentation [32.43362825854633]
本稿では,タスク指向対話を完全自動で生成するフレームワークを提案する。
我々のフレームワークはタスク指向対話における各ターンペアは特定の機能を持つという単純な考え方を用いています。
いくつかのドメインの微調整シナリオの大幅な改善を観察します。
論文 参考訳(メタデータ) (2021-02-27T18:55:12Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Fact-based Dialogue Generation with Convergent and Divergent Decoding [2.28438857884398]
本稿では,コンバージェントな思考能力を備えたエンドツーエンドのファクトベース対話システムを提案する。
我々のモデルは、情報的かつ多様な応答を生成できる新しい収束および分岐復号を組み込んでいる。
論文 参考訳(メタデータ) (2020-05-06T23:49:35Z) - Low-Resource Knowledge-Grounded Dialogue Generation [74.09352261943913]
我々は、限られた訓練例しか利用できないという自然な仮定のもと、知識基底による対話生成を考察する。
生成モデル全体から知識基底の対話に依存するパラメータを分離するために,不整合応答デコーダを考案する。
1/8のトレーニングデータだけで、我々のモデルは最先端のパフォーマンスを達成でき、ドメイン外の知識をうまく一般化できる。
論文 参考訳(メタデータ) (2020-02-24T16:20:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。