論文の概要: Long Dialog Summarization: An Analysis
- arxiv url: http://arxiv.org/abs/2402.16986v1
- Date: Mon, 26 Feb 2024 19:35:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 18:40:46.435211
- Title: Long Dialog Summarization: An Analysis
- Title(参考訳): 長いダイアログ要約:分析
- Authors: Ankan Mullick, Ayan Kumar Bhowmick, Raghav R, Ravi Kokku, Prasenjit
Dey, Pawan Goyal, Niloy Ganguly
- Abstract要約: この研究は、様々なアプリケーションにおける効果的なコミュニケーションのために、一貫性と文脈的に豊かな要約を作成することの重要性を強調している。
異なる領域における長いダイアログの要約に対する現在の最先端のアプローチについて検討し、ベンチマークに基づく評価により、異なる要約タスクのために、各領域で1つのモデルがうまく機能しないことを示す。
- 参考スコア(独自算出の注目度): 28.223798877781054
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Dialog summarization has become increasingly important in managing and
comprehending large-scale conversations across various domains. This task
presents unique challenges in capturing the key points, context, and nuances of
multi-turn long conversations for summarization. It is worth noting that the
summarization techniques may vary based on specific requirements such as in a
shopping-chatbot scenario, the dialog summary helps to learn user preferences,
whereas in the case of a customer call center, the summary may involve the
problem attributes that a user specified, and the final resolution provided.
This work emphasizes the significance of creating coherent and contextually
rich summaries for effective communication in various applications. We explore
current state-of-the-art approaches for long dialog summarization in different
domains and benchmark metrics based evaluations show that one single model does
not perform well across various areas for distinct summarization tasks.
- Abstract(参考訳): ダイアログの要約は、様々な領域にわたる大規模会話の管理と理解においてますます重要になっている。
本課題は,要約のための多ターン長会話のキーポイント,コンテキスト,ニュアンスを抽出する上で,ユニークな課題を示す。
要約技術は、ショッピングチャットボットのシナリオなど、特定の要件に基づいて異なり、ダイアログの要約はユーザの嗜好を学習するのに役立つが、カスタマーコールセンターの場合は、ユーザが指定した問題属性と提供された最終的な解決が関係していることに注意する必要がある。
この研究は、様々なアプリケーションにおける効果的なコミュニケーションのために、コヒーレントでコンテキスト的にリッチな要約を作成することの重要性を強調している。
異なる領域における長いダイアログの要約に対する現在の最先端のアプローチについて検討し、ベンチマークに基づく評価により、1つのモデルが異なる要約タスクのために様々な領域でうまく機能しないことを示す。
関連論文リスト
- Increasing faithfulness in human-human dialog summarization with Spoken Language Understanding tasks [0.0]
本稿では,タスク関連情報を組み込むことによって,要約処理の促進を図ることを提案する。
その結果,タスク関連情報とモデルを統合することで,単語の誤り率が異なる場合でも要約精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-09-16T08:15:35Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
本研究は,対話エージェントの主要な特徴,対応するオープンドメインデータセット,およびこれらのデータセットをベンチマークする手法について概説する。
我々は,既存のデータセットの会話から構築された統一dIalogue dataseTであるUNITを提案する。
論文 参考訳(メタデータ) (2023-07-14T10:05:47Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - A Focused Study on Sequence Length for Dialogue Summarization [68.73335643440957]
既存のモデルの出力とそれに対応する人間の参照の長さの差を解析する。
モデル設定を比較し,要約長予測のための有能な特徴を同定する。
第3に,要約長を十分に組み込むことができれば,既存のモデルに顕著な改善がもたらされることを示す。
論文 参考訳(メタデータ) (2022-09-24T02:49:48Z) - TODSum: Task-Oriented Dialogue Summarization with State Tracking [16.87549093925514]
タスク指向の対話要約データセット TODSum を大規模に導入する。
既存の作業と比較して、TODSumは深刻な分散情報問題に悩まされており、厳密な事実整合性を必要とする。
対話状態情報と対話履歴を統合するための状態認識型対話要約モデルを提案する。
論文 参考訳(メタデータ) (2021-10-25T06:53:11Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
本研究は,コヒーレンス検出とサブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サミマリ・ジェネレーションという2つのトピック・アウェア・コントラスト学習目標を提案する。
ベンチマークデータセットの実験では、提案手法が強いベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-09-10T17:03:25Z) - CSDS: A Fine-grained Chinese Dataset for Customer Service Dialogue
Summarization [44.21084429627218]
CSDS (Customer Service Dialogue Summarization) のための新しい中国語データセットについて紹介する。
CSDSは,(1)対話全体の全体的要約に加えて,異なる話者の視点を得るための役割指向要約も提供する。
CSDSの様々な要約手法を比較し,実験結果から,既存の手法は冗長で一貫性の低い要約を生成する傾向にあることが示された。
論文 参考訳(メタデータ) (2021-08-30T11:56:58Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
顧客サービスシステムでは、長い音声対話のための要約を作成することにより、対話要約はサービス効率を高めることができる。
本研究では,高度に抽象的な要約を生成するトピック指向の対話要約に注目した。
SATM(Saliency-Awareural topic Model)と併用し,顧客サービス対話のトピック指向要約を目的とした,新しいトピック拡張型2段階対話要約器(TDS)を提案する。
論文 参考訳(メタデータ) (2020-12-14T07:50:25Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。