Sample Constrained Treatment Effect Estimation
- URL: http://arxiv.org/abs/2210.06594v1
- Date: Wed, 12 Oct 2022 21:13:47 GMT
- Title: Sample Constrained Treatment Effect Estimation
- Authors: Raghavendra Addanki, David Arbour, Tung Mai, Cameron Musco, Anup Rao
- Abstract summary: We focus on designing efficient randomized controlled trials, to accurately estimate the effect of some treatment on a population of $n$ individuals.
In particular, we study sample-constrained treatment effect estimation, where we must select a subset of $s ll n$ individuals from the population to experiment on.
- Score: 28.156207324508706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Treatment effect estimation is a fundamental problem in causal inference. We
focus on designing efficient randomized controlled trials, to accurately
estimate the effect of some treatment on a population of $n$ individuals. In
particular, we study sample-constrained treatment effect estimation, where we
must select a subset of $s \ll n$ individuals from the population to experiment
on. This subset must be further partitioned into treatment and control groups.
Algorithms for partitioning the entire population into treatment and control
groups, or for choosing a single representative subset, have been well-studied.
The key challenge in our setting is jointly choosing a representative subset
and a partition for that set.
We focus on both individual and average treatment effect estimation, under a
linear effects model. We give provably efficient experimental designs and
corresponding estimators, by identifying connections to discrepancy
minimization and leverage-score-based sampling used in randomized numerical
linear algebra. Our theoretical results obtain a smooth transition to known
guarantees when $s$ equals the population size. We also empirically demonstrate
the performance of our algorithms.
Related papers
- Adaptive Experiment Design with Synthetic Controls [79.69661880236293]
We propose Syntax, an exploratory trial design that identifies subpopulations with positive treatment effect among many subpopulations.
We validate the performance of Syntax and provide insights into when it might have an advantage over conventional trial designs through experiments.
arXiv Detail & Related papers (2024-01-30T17:45:47Z) - Statistical Performance Guarantee for Subgroup Identification with
Generic Machine Learning [1.0878040851638]
We develop uniform confidence bands for estimation of the group average treatment effect sorted by generic ML algorithm (GATES)
We analyze a clinical trial of late-stage prostate cancer and find a relatively large proportion of exceptional responders.
arXiv Detail & Related papers (2023-10-12T01:41:47Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - Adaptive Identification of Populations with Treatment Benefit in
Clinical Trials: Machine Learning Challenges and Solutions [78.31410227443102]
We study the problem of adaptively identifying patient subpopulations that benefit from a given treatment during a confirmatory clinical trial.
We propose AdaGGI and AdaGCPI, two meta-algorithms for subpopulation construction.
arXiv Detail & Related papers (2022-08-11T14:27:49Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - High-Dimensional Feature Selection for Sample Efficient Treatment Effect
Estimation [0.0]
The estimation of causal treatment effects from observational data is a fundamental problem in causal inference.
We propose a common objective function involving outcomes across treatment cohorts.
We validate our approach with experiments on treatment effect estimation.
arXiv Detail & Related papers (2020-11-03T19:54:16Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Efficient Discovery of Heterogeneous Quantile Treatment Effects in
Randomized Experiments via Anomalous Pattern Detection [1.9346186297861747]
Treatment Effect Subset Scan (TESS) is a new method for discovering which subpopulation in a randomized experiment is most significantly affected by a treatment.
In addition to the algorithm, we demonstrate that under the sharp null hypothesis of no treatment effect, the Type I and II error can be controlled.
arXiv Detail & Related papers (2018-03-24T20:21:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.