A Machine Learning-Based Error Mitigation Approach For Reliable Software Development On IBM'S Quantum Computers
- URL: http://arxiv.org/abs/2404.12892v1
- Date: Fri, 19 Apr 2024 13:51:40 GMT
- Title: A Machine Learning-Based Error Mitigation Approach For Reliable Software Development On IBM'S Quantum Computers
- Authors: Asmar Muqeet, Shaukat Ali, Tao Yue, Paolo Arcaini,
- Abstract summary: Current quantum computers have inherent noise that results in errors in the outputs of quantum software executing on the quantum computers.
This paper proposes a practical machine learning approach, called Q-LEAR, to mitigate noise errors in quantum software outputs.
Results show that, compared to the baseline, Q-LEAR achieved a 25% average improvement in error mitigation on both real quantum computers and simulators.
- Score: 8.50998018964906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the potential to outperform classical computers for some complex computational problems. However, current quantum computers (e.g., from IBM and Google) have inherent noise that results in errors in the outputs of quantum software executing on the quantum computers, affecting the reliability of quantum software development. The industry is increasingly interested in machine learning (ML)--based error mitigation techniques, given their scalability and practicality. However, existing ML-based techniques have limitations, such as only targeting specific noise types or specific quantum circuits. This paper proposes a practical ML-based approach, called Q-LEAR, with a novel feature set, to mitigate noise errors in quantum software outputs. We evaluated Q-LEAR on eight quantum computers and their corresponding noisy simulators, all from IBM, and compared Q-LEAR with a state-of-the-art ML-based approach taken as baseline. Results show that, compared to the baseline, Q-LEAR achieved a 25% average improvement in error mitigation on both real quantum computers and simulators. We also discuss the implications and practicality of Q-LEAR, which, we believe, is valuable for practitioners.
Related papers
- Assessing Quantum Extreme Learning Machines for Software Testing in Practice [6.071493448254842]
We study how quantum noise affects QELM in three industrial and real-world classical software testing case studies.
Our results show that QELMs are significantly affected by quantum noise, with a performance drop of 250% in regression tasks and 50% in classification tasks.
While error mitigation techniques can enhance noise resilience, achieving an average 3.0% performance drop in classification, but their effectiveness varies by context.
arXiv Detail & Related papers (2024-10-20T20:17:58Z) - Machine Learning for Practical Quantum Error Mitigation [0.0]
We show that machine learning for quantum error mitigation can drastically reduce overheads, maintain or even surpass the accuracy of conventional methods.
Our results highlight the potential of classical machine learning for practical quantum computation.
arXiv Detail & Related papers (2023-09-29T16:17:12Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Programming Quantum Hardware via Levenberg Marquardt Machine Learning [2.127049691404299]
Machine learning can be used as a systematic method to nonalgorithmically program quantum computers.
We have shown that our machine learning approach is robust to both noise and to decoherence.
Results from this have been successfully ported to the IBM hardware and trained using a powerful hybrid reinforcement learning technique.
arXiv Detail & Related papers (2022-04-14T15:05:41Z) - Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation [0.0]
We study models in open quantum systems with Trotterisations for the modified Schr"odinger equation (MSSE)
Minimising the leading error in MSSE enables to optimise the quantum circuits.
We run the algorithm on the IBM Quantum devices, showing that the current machine is challenging to give quantitatively accurate time dynamics due to the noise.
arXiv Detail & Related papers (2022-03-27T13:00:02Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.